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Abstract

Models of acoustic word embeddings (AWEs) learn to map
variable-length spoken word segments onto fixed-dimensionality
vector representations such that different acoustic exemplars of
the same word are projected nearby in the embedding space. In
addition to their speech technology applications, AWE models
have been shown to predict human performance on a variety of
auditory lexical processing tasks. Current AWE models are based
on neural networks and trained in a bottom-up approach that in-
tegrates acoustic cues to build up a word representation given an
acoustic or symbolic supervision signal. Therefore, these models
do not leverage or capture high-level lexical knowledge during
the learning process. In this paper, we propose a multi-task learn-
ing model that incorporates top-down lexical knowledge into
the training procedure of AWEs. Our model learns a mapping
between the acoustic input and a lexical representation that en-
codes high-level information such as word semantics in addition
to bottom-up form-based supervision. We experiment with three
languages and demonstrate that incorporating lexical knowledge
improves the embedding space discriminability and encourages
the model to better separate lexical categories.
Index Terms: acoustic word embeddings, form-to-meaning
mapping, cognitive modeling, multi-task learning

1. Introduction
The development of robust automatic speech recognition (ASR)
systems requires large collections of high-quality transcribed
speech, which are only available for a small subset of the world
languages. To facilitate access to spoken content for language
varieties that are not yet supported by conventional ASR systems,
researchers have developed voice-based search applications such
as query-by-example (QbE) search [1–3]. These systems rely on
vector-space acoustic models that map variable-length spoken
word segments onto fixed-size vector representations such that
exemplars of the same word are (ideally) projected onto the same
vector [4–8]. In the speech technology literature, these fixed-
dimensionality vector representations are known as acoustic
word embeddings (AWEs). Currently, the top performing and
the most efficient models of AWEs are based on deep neural
networks (DNNs) [9–12]. Due to the ubiquity of computers
that support DNNs coupled with highly-optimized vector-space
search algorithms [13], AWEs enable efficient indexing and
retrieval of spoken content at an unprecedented scale.

In addition to their applications in speech technology, DNN-
based models of AWEs have been adopted as models of human
speech processing and analyzed from a cognitively motivated an-
gle in recent studies. For example, it has been shown that AWEs
exhibit a human-like word onset bias where distinct words are
more likely to be perceived as similar if they begin with the
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Figure 1: A schematic view of our proposed model.

same sound [14]. Furthermore, AWE models have been shown
to predict non-native perceptual difficulties in phonetic catego-
rization [15], cross-linguistic effects in auditory lexical process-
ing [16], and the facilitation effect of cross-language similarity
on spoken-word processing [17, 18]. In non-native word pro-
duction, models of AWEs have been reported to capture lexical
production patterns of second language (L2) learners [19]. These
empirical findings from cognitively motivated, computational
word perception and production studies encourage further inte-
gration between speech technology and cognitive science.

Nevertheless, the majority of existing AWEs rely on su-
pervision signals that only capture low-level, form-based in-
formation about the word. That is, AWEs are learned in a
bottom-up approach whereby acoustic-phonetic cues are inte-
grated in the model to build up a word form representation that
encodes its phonetic features and phonological structure. How-
ever, a host of psycholinguistic studies with human listeners
have shown that top-down, high-level lexical properties—such
as word semantics—not only interact with the word recognition
process but also facilitate discrimination between word com-
petitors [20–24]. We take inspiration from these experimental
findings and introduce an AWE model based on the multi-task
learning framework that integrates form-based and meaning-
based supervision signals into a single model (Fig. 1). Contrary
to prior work that aims to learn the semantic content directly
using a very large speech corpus [25], our model incorporates
word semantics as an additional supervision signal, thus requir-
ing only a few hours of speech and being more applicable in
low-resource settings. We experiment with read speech corpora
for three languages and empirically demonstrate that integrating
high-level lexical knowledge into training AWEs improves the
ability of the model to discriminate between lexical categories.
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2. AWEs via Multi-Task Learning
Given an acoustic signal that corresponds to a spoken word
represented as a temporal sequence of T spectral vectors, i.e.,
A = (a1,a2, ...,aT ), the goal of an AWE model is to transform
A into a fixed-dimensionality vector representation x. This task
corresponds to learning an encoder function Fθ : A −→ RD ,
where A is the (continuous) space of acoustic sequences, D is the
dimensionality of the embedding, and θ are the parameters of the
function. Sequences in A can vary in length, thus the function
Fθ should be modeled with a suitable neural architecture such
as recurrent neural networks (RNNs). Therefore, transforming a
variable-length acoustic input into a D-dimensional AWE can
be described as

x = F(A;θF ) ∈ RD (1)
Different approaches in the literature have been proposed
for modeling the function F(.;θF ), which can be character-
ized as either architectural innovations or introducing new
loss functions. In the approach we propose in this paper,
our goal is to integrate two sources of supervision signals—
namely phonological form and lexical semantics—into the
training procedure. To this end, we assume a dataset D =
{(A1, w1), (A2, w2), . . . , (AN , wN )} of N spoken words
where wi is the written form of the ith word. Such a dataset
can be automatically obtained using a forced alignment tool
on a transcribed speech dataset. Furthermore, we assume
the availability of two look-up dictionaries: (1) a dictionary
that maps each written word onto its phonetic transcription as
Φ(w) = φ1:τ = {φ1, φ2, . . . , φτ}, which can be automatically
created using a grapheme-to-phoneme (G2P) tool, and (2) a
lookup dictionary that maps each word into a distributed word
representation as Λ(w) = w ∈ RK . The distributed word repre-
sentation ideally encodes high-level lexical knowledge about the
word—such as its semantic and syntactic properties—and can be
obtained independently using a large text corpus or from a public
repository of semantic word embeddings such as word2vec [26],
Glove [27], or fasttext [28].

2.1. Form-based Phonological Supervision

Our first learning objective is based on the sequence-to-sequence
learning framework in which the network is trained as a word-
level acoustic model (Fig.1, branch [A]). Given the output of
acoustic encoder x, a phonological decoder G(.;θG) aims to
decode the corresponding phonological sequence φ1:τ of the
word form x. The objective is to minimize a categorical cross-
entropy loss at each timestep in the decoder, which is equivalent
to minimizing the term

Lϕ(θF ,θG) = −
∑

(Ai,wi)∈D
log P

(
Φ(wi) | xi; θG

)

= −
∑

(Ai,wi)∈D

τ∑

t=1

log P
(
φt | t, xi; θG

) (2)

where P
(
φt | t, xi; θG

)
is the probability of the phoneme φt at

the tth timestep, conditioned on the previous phoneme sequence
φ1:t−1 and the AWE x, and θG are the parameters of the decoder.
The intuition of this learning objective is the following: although
their acoustic realizations vary due to speaker and context vari-
ability, different exemplars of the same word category would
have identical phonetic transcriptions. Therefore, we expect the
model to project exemplars of the same lexical category nearby
in the embedding space and the distance in embedding space
should ideally correlate with phonological (dis)similarity.

2.2. Meaning-based Lexical Supervision

Our second learning objective aims to map the acoustic input
A onto a high-level lexical representation (Fig.1, branch [B]).
The goal here is to incorporate a supervision signal from a level
that is higher in the linguistic hierarchy compared to form-based
phonological supervision. Inspired by Maas et al. [29], we
model this task as a vector regression problem. The output of the
acoustic encoder x is transformed via a feed-forward network
into a semantic vector as v = H(x;θH) ∈ RK . Thus, the
objective is to minimize the term

Lλ(θF ,θH) =
∑

(Ai,wi)∈D
|| vi − Λ(wi) ||2 (3)

where Λ(wi) ∈ RK is the ground-truth distributed represen-
tation, or semantic word embedding, of the ith sample. We
assume that continuous-space, distributed word representations
are available to the model during training. Given the ubiquity of
semantic word embeddings in the natural language processing
research and the availability of large scale text corpora for many
languages, we believe that our assumption is reasonable.

2.3. Integrating Form and Meaning Supervision

To integrate the two sources of supervision when training the
model, we jointly minimize the term

L(θF ,θG ,θH) = α · Lϕ + β · Lλ (4)

Here, α and β are trade-off hyperparameters (i.e., scalars) that
control the contribution of each term to the overall loss.

3. Baseline: Contrastive Acoustic Model
We compare the performance of our proposed model to a strong
baseline that explicitly minimizes the distance between exem-
plars of the same lexical category. The baseline model employs
a contrastive triplet loss that has been extensively explored in
the AWEs literature with different underlying architectures and
has shown strong discriminative performance [9, 30–32]. Given
a matching pair of AWEs (xa,x+)—i.e., embeddings of two
exemplars of the same word type—the objective is then to mini-
mize a triplet margin loss

L(θF ) =
∑

(Ai,wi)∈D
max

[
0, µ+d(xi,x+)−d(xi,x−)

]
(5)

where x− is an AWE that corresponds to a word other than wi,
and d : RD ×RD → [0, 1] is the cosine distance. This objective
aims to map acoustic exemplars of the same word closer in the
embedding space while pushing away segments of different word
types by a distance defined by the margin hyperparameter µ. To
obtain negative samples, we use hard negative sampling [33],
that is, we create mismatching pairs from the mini-batch such
that d(xi,x−) is minimized.

4. Experiments
4.1. Experimental Data

The data in our study is drawn from the GlobalPhone multilin-
gual speech database [34] for Portuguese, German, and Polish
(see Table 1). We sample 42 speakers from each language for
training and obtain spoken word segments using the Montreal
Forced Aligner [35]. It is worth pointing out that the speakers
in the validation and test splits are held-out and not used while
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Figure 2: Learning curves of the models for 100 training epochs, quantified by the word discrimination task and the mAP metric.

training. The phonetic transcription for each word is produced
using the eSpeak G2P tool. Then, each acoustic segment is
parametrized as a sequence of 39-dimensional Mel-frequency
spectral coefficients of 25ms frames with 10ms overlap.

4.2. Architecture and Hyperparameters

Acoustic Encoder F(.;θF ). Our acoustic encoder consists
of a hybrid, convolutional-recurrent neural network architecture.
The frond-end consists of a 1D convolutional layer of 64 filters
with a kernel size of 5 spectral vectors and stride of 2. Then,
the output of the convolutional layer is fed sequentially into a
recurrent block that consists of a 3-layer unidirectional Gated
Recurrent Unit (GRU) with a hidden state of 512 units, which
yields a 512-dimensional AWE as the last hidden state of the
GRU. We apply layer-wise dropout with a probability of 0.2.
Bidirectional GRUs did not yield further improvements.

Phonological Decoder G(.;θG). We employ a 1-layer GRU of
512 units hidden state that takes the 512-dimensional AWE as the
initial hidden state and decodes the corresponding phonological
sequence without teacher forcing.

Form-to-Meaning Regressor H(.;θH). We employ a linear
layer (512 → 300) followed by a tanh non-linearity to project
the AWE x onto the corresponding distributed word representa-
tion. We use pre-trained 300-dimensional fasttext embeddings as
distributed word representations. Deeper feed-forward networks
did not yield further improvements.

Contrastive Loss. For the baseline model with the contrastive
loss, we experiment with different values of the margin hyper-
parameter µ = {0.2, 0.3, 0.4, 0.5}, out of which 0.4 yields the
best performance on the validation set.

Training Details. We train all models in this study for 100
epochs with batches of 256 samples using the Adam optimizer
[36] with an initial learning rate (LR) of 0.001. The LR is
reduced by a factor of 0.5 if the performance on the validation
set does not improve for 10 epochs. The epoch with the best
validation performance is used for evaluation on the test set.

Implementation. We develop our code using PyTorch [37]
and we make it publicly available (https://github.com/
uds-lsv/semantically_enriched_AWEs).

Table 1: Word-level statistics of our experimental data.

# segments per split duration
(µ± σ) TTR

train valid test

Portuguese 28810 9029 9580 0.51 ± 0.19 0.147
German 28914 9683 9372 0.44 ± 0.18 0.193
Polish 27979 9656 9089 0.50 ± 0.18 0.267

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
mAP

Portuguese
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Figure 3: Word discrimination performance (mAP) on test set.

4.3. Experimental Results

We conduct an intrinsic evaluation for the AWEs to assess the
performance of our models using the same-different acoustic
word discrimination task with the mean average precision (mAP)
metric [31, 38, 39]. Prior work has shown that performance on
this task positively correlates with improvement on downstream
QbE speech search [32]. This task evaluates the ability of the
model to determine whether two given speech segments cor-
respond to the same word type—that is, whether or not two
acoustic segments are exemplars of the same category.

Fig. 2 shows the learning curves for the models during 100
epochs of training quantified by the performance on the vali-
dation set. Contrary to the other models, we observe that the
contrastive baseline model reaches a reasonable performance
before the 10th epoch, which we attribute to the fact that the
evaluation task (word discrimination) and the learning objec-
tive (contrastive triple loss) are analogous. Fig. 3 shows the
final performance on the test set. We observe that both the
form-only model (α = 1, β = 0) and the meaning-only model
(α = 0, β = 1) perform poorly compared to the contrastive
baseline. However, integrating the two sources of supervision in
the form + meaning setting (α = 1, β = 1) enables the model
to outperform the contrastive baseline for the three languages
in our study. The gain in performance is more prominent in
the Polish language (relative mAP gain by 5.06%), which is
the most morphologically complex language in our study due
to its rich inflection system. The Polish morphological com-
plexity is also reflected in its relatively high type-to-token ratio
(TTR) in Table 1. These findings show that integrating high-level
linguistic knowledge in training acoustic models improves the
discriminability of the embeddings space, and the effect seems
to be more prominent on a language with a rich morphological
system.
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Figure 4: Two-dimensional visualization of the word embedding
space using the t-SNE algorithm: (Top) Portuguese, (Middle)
German, and (Bottom) Polish. Figure is best viewed in color.

4.4. Embedding Visualization

To analyze our multi-task learning model and gain further in-
sights into its emergent embedding space, we use the t-SNE [40]
dimensionality reduction algorithm on the AWEs from the set-
ting where α = 1 and β = 1 (form + meaning supervision). We
visualize the embeddings of acoustic word samples from held-
out speakers (i.e., a set of speakers the models were not trained
on). Note that the t-SNE objective aims to preserve the local
structure within the higher-dimensional space when reducing the
dimensionality. Therefore, the local distance between the two-
dimensional projections of the embeddings mainly reflects the
cluster structure within the embedding space, which enables us
to visually inspect the emergent clusters and investigate whether
or not they correspond to distinct lexical categories.

The t-SNE visualizations for the three languages in our
study are illustrated in Fig. 4. We observe a clear tendency
for exemplars of the same lexical category to closely cluster in
the embedding space, despite the lack of an explicit clustering
objective in the learning procedure. One notable exception we
observe in Fig. 4 (bottom) for the Polish language is the two
nearby, nearly overlapping clusters that correspond to the word
forms [tysięcy] and [tysiące]. Note that these two word forms
are two morphological variants of the same lemma (i.e., [tysiąc],
the Polish word for thousand). Given their semantic and phono-
logical similarity, a small distance between the centroids of their
clusters is expected.

5. Discussion and Conclusion
AWEs are vector representations of spoken words that encode
their acoustic-phonetic features and phonological structures. In
addition to their utility in speech technology applications, models
of AWEs have shown to produce human-like behavior in various
auditory lexical processing tasks. Existing methods for learn-
ing AWEs from speech corpora employ training strategies with
acoustic, phonological feature-based, or symbolic form-based
supervision. These learning strategies correspond to the bottom-
up integration of acoustic-phonetic cues to build up a word form
representation. In our paper, we have introduced a methodol-
ogy based on the multi-task learning framework that leverages
top-down, high-level lexical knowledge to learn semantically-
enriched AWEs. We have experimented with semantic word
embeddings as distributed meaning representations that guide
the learning process in addition to form-based phonological su-
pervision. Our experiments have demonstrated that integrating
the two sources of supervision (i.e., phonological form and lexi-
cal semantics) improves the discriminability of the embeddings
space—for the three languages in our study—as evidenced by
the competent performance of our model compared to a strong
contrastive AWE model. Furthermore, the t-SNE visualization
analysis has supported our experimental findings in the word
discrimination evaluation and provided further evidence that in-
corporating top-down lexical knowledge encourages the model
to better separate the lexical categories in the embedding space
without explicit supervision that directs the network to minimize
the distance in the embedding space or a clustering objective.
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