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Abstract
Self-supervised representation learning for speech often involves
a quantization step that transforms the acoustic input into dis-
crete units. However, it remains unclear how to characterize
the relationship between these discrete units and abstract pho-
netic categories such as phonemes. In this paper, we develop
an information-theoretic framework whereby we represent each
phonetic category as a distribution over discrete units. We then
apply our framework to two different self-supervised models
(namely, wav2vec 2.0 and XLSR) and use American English
speech as a case study. Our study demonstrates that the entropy
of phonetic distributions reflects the variability of the underly-
ing speech sounds, with phonetically similar sounds exhibiting
similar distributions. While our study confirms the lack of di-
rect one-to-one correspondence, we find an intriguing indirect
relationship between phonetic categories and discrete units.
Index Terms: discrete speech representations, self-supervised
learning, information theory

1. Introduction
Self-supervised learning (SSL) for the speech modality is an
active area of research that aims to develop models that build
meaningful speech representations from raw audio without any
explicit labels or transcriptions (see [1] for an overview). These
models can be further adapted for downstream tasks such as
automatic speech recognition and speaker identification, and
have become the state-of-the-art approach even when limited
labeled data are available [2, 3, 4, 5]. Recently, it has become a
common practice to include a quantization module within the
architecture of SSL speech models that transforms the acoustic
input into a sequence of discrete entities. Besides representing
the complex acoustic signal in a compact and computationally
efficient manner, learning discrete representations of speech can
also facilitate training large SSL speech models using a masked
language modeling objective similar to those employed in natural
language processing (e.g., BERT [6]).

Nevertheless, the nature of the discrete units learned via
self-supervision remains an under-explored area of research.
A key question is whether these discrete representations cor-
respond to abstract phonetic categories such as phonemes. A
few recent studies have investigated the discrete units from a
neural network interpretability point of view [7, 8, 9, 10]. The
analysis in [9] showed that the discrete units correspond to low-
level “sub-phonetic” events—rather than high-level phonetic
categories—since they are sensitive to context-dependent and
non-phonemic variations in speech. In [10], the authors con-
cluded that there exists a strong correspondence between dis-
crete units and phonemes, and attributed the lack of consistent
phoneme-to-unit mapping to variations in phonological contexts.

These findings seem to be contradictory and rely on different
definitions of the term “phoneme”, and thus remain inconclusive.

Although information theory was initially proposed as a
mathematical theory of communication [11], it also provides a
quantitative framework for measuring the amount of information
conveyed by linguistic units, such as words or sounds. Informa-
tion theory has been adopted as a framework to study various
aspects of linguistic structure, including phonology [12, 13],
morphology [14, 15], and syntax [16, 17]. In this paper, we
build on this line of research and develop information-theoretic
metrics to analyze the correspondence between phonetic cate-
gories and discrete units. Concretely, we make the following
contributions:
• We develop an empirical approach to represent each phonetic

category as a probability distribution over discrete units using
two self-supervised pre-trained models: English wav2vec 2.0
(henceforth W2V2) and multilingual wav2vec-XLSR (hence-
forth XLSR) (§2).

• We characterize each phonetic category using the notion of
information entropy and demonstrate that entropy quantifies
acoustic-phonetic variability (§4).

• We quantify the dissimilarity between phonetic distributions
using Jensen-Shannon divergence and illustrate that this met-
ric highly reflects feature-based phonetic similarity (§5).

2. Research methodology
2.1. Speech quantization via self-supervised learning

Consider a continuous acoustic signal represented as a sequence
of T acoustic frames x = (x1, . . . ,xT ). Here, xt could either
be an interval of the raw waveform or a spectral vector such
as MFCCs. Given a pre-trained speech encoder, the signal x
is first transformed via a local, temporal convolutional encoder
F : X 7→ Z into a sequence of latent speech representations in a
continuous space as F(x) = z = (z1, . . . , zT ), where zt ∈ Rd.
As a part of the quantization step, the sequence of continuous
representations gets discretized to produce a sequence of discrete
units D(z) = ω = (ω1, . . . , ωT ), where D : Z 7→ Ω is a
vector-to-centroid mapping and ωt ∈ Ω is the index of the
centroid. Here, we use Ω to denote the finite set of discrete units
within the model codebook. During pre-training using masked
learning objectives, the corresponding quantized representations
of these discrete units become the targets of the model prediction.

2.2. Phonetic categories as distributions over discrete units

Consider a speech corpus that is transcribed and aligned to pho-
netic segments given an inventory of phonetic categories Φ. In
this scenario, a phonetic category can be considered as a set
of K different acoustic exemplars obtained from the corpus,
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φ = {φ1, . . . , φK}. These exemplars represent different acous-
tic realizations of the underlying phonetic category, and should
optimally be produced by various speakers in diverse phono-
logical contexts. Using the feature encoder and quantization
module of a self-supervised speech model, we transform the
associated acoustic segments of all exemplars {x1, . . . ,xK}
into a discrete representation to obtain a collection of discrete
sequences {(ω1

1 , . . . , ω
1
τ1), . . . , (ω

k
1 , . . . , ω

k
τk )} for each pho-

netic category. We then discard the exemplar identity as well as
the sequential nature of each discrete sequence and view each
phonetic category as a bag of discrete units. In this approach,
each phonetic category can be described as a frequency distribu-
tion over the units in Ω. To facilitate our information-theoretic
analysis, we turn the frequency distribution into a probability
distribution where the probability of observing a discrete unit
ω under a phonetic category φ is calculated using maximum
likelihood estimation as follows

pφ(ωi) =
Nφ(ωi)∑
π∈Ω Nφ(π)

(1)

Here, Nφ : Ω 7→ Z+ is a function that returns the number of
occurrences of a discrete unit under the phonetic category φ, and
therefore pφ : Ω 7→ [0, 1] is a probability mass function defined
over Ω such that

∑
ω∈Ω pφ(ω) = 1. Note that each phonetic

category in our analysis has its own pφ and Nφ functions. For
example, the vowels /æ/ and /O/ are represented as two empirical
distributions p/æ/ and p/O/, respectively. Given our representation
of a phonetic category as a distribution over discrete units pφ,
we can employ information-theoretic metrics to characterize
each phonetic distribution. For simplicity, we henceforth omit
the subscript notation in pφ and use p to denote a distribution
associated with a single phonetic category.

3. Experimental data and models
Speech data. We use the TIMIT speech corpus which con-
sists of recordings from 630 American English speakers each
speaking 10 different sentences, for a total of 6,300 sentences
covering a diverse range of ages, genders, and regional accents
from across the United States [18]. Following [19], the origi-
nal phonetic categories of TIMIT annotation are mapped to the
reduced set of 40 categories. We exclude silences and closures
from our analysis.

SSL speech models. We conduct our analysis using two pub-
licly available (via the HuggingFace Model Hub) SSL speech
models: (1) monolingual English wav2vec 2.0-BASE [4], which
is a 12-layer transformer model, and (2) multilingual wav2vec
XLSR-53-LARGE [20], which is a 24-layer transformer model
trained on different languages. Both models employ two code-
books with 320 discrete units each, for a total of 640 units in each
model. We consider the concatenation of the two codebooks as
the set of discrete units in our analysis, thus |Ω| = 640.

Code and reproducibility. Our analysis code is publicly
available on GitHub1.

4. Analysis I: Phonetic variability as
information entropy

4.1. Information content and entropy

For any discrete unit within the codebook ω ∈ Ω, we measure
its information content, or surprisal under a specific phonetic

1https://github.com/uds-lsv/phone2unit
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Figure 1: (A) The (normalized) entropy of each phonetic category
in W2V2 (x-axis) vs XLSR (y-axis). (B-C) The entropy of several
selected articulatory classes in W2V2 (B) and XLSR (C).

category as
η(ω) = −log2 p(ω) (2)

which quantifies the unexpectedness of the discrete unit to be
observed under the phonetic category associated with the distri-
bution p. It is measured in bits. The uncertainty or “randomness”
of the distribution p can be quantified as the average surprisal,
or entropy

H(p) =
∑

ω∈Ω

p(ω) η(ω) (3)

where 0 ≤ H(p) ≤ log2|Ω|. If all acoustic realizations of
a phonetic category are associated with a single discrete unit,
then its entropy is minimal H(p) = 0. On the other hand, a
distribution of a phonetic category is maximally entropic (i.e.,
H(p) = log2|Ω|) when all discrete units are equally likely to
be aligned to this category. Therefore, entropy can be viewed
as a measure of (within-category) acoustic-phonetic variability
in our case. That is, the more entropic a phonetic category is,
the higher the difficulty of predicting its alignment to discrete
units. Note that our measure of variability is similar to the
measure of diversity (i.e., the unit purity measure) introduced in
[5], but we express the variability of phonetic distributions using
information-theoretic metrics.

4.2. Entropy per phonetic category

We compute the entropy of each phonetic category using Eq. 3.
First, we find that phonetic categories are more entropic on
average under W2V2 (mean H = 3.97) compared to XLSR

2884



(mean H = 3.52). After inspecting the phone-to-unit alignment
of the TIMIT corpus, we attribute this behavior to different
utilization of the codebooks across the two models. While there
are 56.6% of the discrete units under W2V2 with non-zero counts
across all phonetic categories, only 24.2% of the units have non-
zero counts under XLSR. This difference gets reflected in lower
entropy values in XLSR compared to W2V2.

Fig. 1 illustrates the results of our analysis with entropy as a
measure of phonetic variability. Fig. 1A shows the entropy of
each phonetic category in W2V2 (x-axis) and XLSR (y-axis). We
report the normalized entropy in Fig. 1A to account for differ-
ences in entropy values between the two models. In addition,
we group phonetic categories according to several articulatory
classes, average the entropy over the categories within each class,
and depict the result for W2V2 (Fig. 1B) and XLSR (Fig. 1C).
From Fig. 1A, we observe a strong correlation between the two
models (Pearson’s r = 0.92, p ≪ 0.001). When considering
entropy values, we see that none of the phonetic categories is
minimally entropic (i.e, H(p) = 0), which confirms the findings
in the literature about the lack of one-to-one correspondence be-
tween high-level abstract phonetic categories and discrete units
in self-supervised speech models.

Regarding the variation of entropy across different phonetic
categories, we observe that vowels tend to be more entropic than
consonants in W2V2 (HV = 4.28 > HC = 3.78) and XLSR
(HV = 3.77 > HC = 3.36). This reflects a higher variability
in the acoustic realizations of vowels compared to consonants,
since vowels are subject to a higher degree of variation due
to vowel reduction in unstressed syllables and co-articulation,
as well as other factors such as cross-speaker and dialect vari-
ability [21, 22, 23]. For consonants, the nasal sounds (i.e., /n,
m, N/) are the most entropic consonant group, followed by the
approximant sounds (i.e., /l, j, w, ô/), and then by the frica-
tive sounds (i.e., /D, z, Z, v, T, s, S, f, h/). We also observe
that resonating consonants (i.e., nasals and approximants) ex-
hibit higher variability on average than obstruents (i.e., plosives,
fricatives, and affricates). Furthermore, we find an effect of
voicing on variability since the voiced fricatives (i.e., /D, z,
Z, v/) are more entropic than their voiceless counterparts (i.e.,
/T, s, S, f/). For example, consider the voiceless-voiced con-
trast /f-v/ where /v/ is substantially more entropic than /f/
under W2V2 (H(/v/) = 4.40 > H(/f/) = 3.41) and XLSR
(H(/v/) = 4.01 > H(/f/) = 2.75). This effect of voicing can
be explained by the presence of low-frequency voicing energy in
voiced fricatives which is likely to vary due to cross-speaker vari-
ability. Finally, the affricates (i.e., /dZ, tS/) are found to be the
least entropic consonant category under both W2V2 (H = 3.33)
and XLSR (H = 2.86).

5. Analysis II: Phonetic dissimilarity as
Jensen-Shannon divergence

5.1. Relative entropy and divergence

Consider two phonetic distributions p and q that are defined over
the same set of discrete units Ω. To quantify how different p
is from q, we measure the expected surprisal from using q as a
model distribution when the true distribution is p. This quantity
is known as the relative entropy or Kullback–Leibler divergence

DKL(p || q) = −
∑

ω∈Ω

p(ω) log2

q(ω)

p(ω)
(4)

Here, DKL(p || q) ≥ 0, with DKL(p || q) = 0 only if
p = q. Note that relative entropy is not symmetric, that is,

DKL(p || q) ̸= DKL(q ||p). Since a symmetric metric is more
suitable for our analysis, we therefore measure the distance
between two probability distributions using Jensen-Shannon di-
vergence (JSD)

DJS(p || q) = 1

2
DKL(p ||m) +

1

2
DKL(q ||m) (5)

where m = 1
2
p + q and 0 ≤ DJS(p || q) ≤ 1. Here, our

goal is to investigate the degree to which the distance between
distributions reflects phonetic similarity. Therefore, we use JSD
as a measure of phonetic (dis)similarity in our analysis.

5.2. Exploratory similarity analysis

Table 1 presents a qualitative similarity analysis for a few se-
lected phonetic categories under both models we analyze in
this study. Concretely, we retrieve five phonetic categories that
exhibit the lowest JSD scores (and by implication the highest
similarity) for each of the categories in the set /w, E, S, g/. We
then provide a ranking in the table from the most similar to the
least. In the case of the approximant or semivowel /w/, we
observe that the approximant sound /l/ exhibits the highest sim-
ilarity under both models, but four vowels appear in ranks 2− 5.
This indicates a high similarity in phonetic distributions between
the approximant /w/ and vowels, which we further study in the
clustering analysis below. For the front vowel /E/, the top-5
similar categories are all vowels under both models, although
no strong preference for other front vowels can be observed
since similar vowels are a mixture of front and central vowels.
The two models exhibit the highest agreement in the case of
the unvoiced post-alveolar fricative /S/, since both models have
identical ranks that include the voiced post-alveolar fricative
/Z/ and the affricates /tS, dZ/ among the most similar. For the
voiced velar plosive /g/, the unvoiced velar plosive /k/ is the
most similar, as expected.

5.3. Hierarchical clustering

To study the similarity patterns among the phonetic categories,
we apply agglomerative hierarchical clustering with the Ward
algorithm [24] over the distance matrix generated by category-
wise JSD values. The result of this clustering is illustrated in
Fig. 2, where each phonetic category is colored by the manner
of articulation. We observe that the clustering analysis yields a
similar high-level grouping between W2V2 and XLSR, except
for the placement of nasals which differs across the two models.
For W2V2 in Fig. 2A, the highest level of organization divides
the phonetic categories into two groups: a group that represents
obstruent sounds (i.e., plosives, fricatives, and affricates) as well
as nasals, and another group that represents vowels and approx-
imants. On the other hand, the highest level of organization in

Table 1: Top-5 most similar phonetic categories to each of the
categories /w, E, S, g/ in both W2V2 (W) and XLSR (X).

/w/ /E/ /S/ /g/

W X W X W X W X

1 /l/ /l/ /æ/ /æ/ /tS/ /tS/ /k/ /k/
2 /u/ /u/ /2/ /I/ /Z/ /Z/ /b/ /b/
3 /U/ /U/ /I/ /2/ /dZ/ /dZ/ /d/ /d/
4 /O/ /@/ /eI/ /eI/ /s/ /s/ /p/ /p/
5 /OI/ /oU/ /aU/ /aI/ /z/ /z/ /D/ /h/
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Figure 2: The resulting clusters from applying agglomerative hierarchical clustering over the distance matrix, where our measure of the
distance is the Jensen-Shannon divergence between phonetic distributions: (A) W2V2 and (B) XLSR.

XLSR in Fig. 2B reveals a pure obstruent vs. sonorant division,
since both approximants and nasals exhibit a higher similarity
to vowels than to other consonants. The consistent grouping of
approximant sounds with vowels is not surprising given their
acoustic-phonetic properties. Even though approximant sounds
are considered consonants from a phonological point of view,
they are produced with a (relatively) unconstricted articulation
and exhibit a formant structure similar to vowels [25].

Considering lower-level grouping for obstruent consonants,
labio-dental and dental fricatives /f, v, T, D/ exhibit a higher
similarity to plosive sounds /p, b, t, d, k, g/ than alveolar and
postalveolar fricatives /s, z, S, Z/ in both models. The affricates
/Ã, Ù/ are grouped together with alveolar and postalveolar frica-
tives under both models, indicating the prominence of the frica-
tive component of affricates in their underlying distributions
over the discrete units. The only phonetic category that exhibits
unexpected behavior in this analysis is the glottal fricative /h/,
which is grouped within plosives under both models. However,
the placement of the fricative /h/ among plosives should not
be surprising given that the voiceless plosives /p, t, k/ are typi-
cally aspirated in syllable-initial position before a stressed vowel.
Plosive aspiration is acoustically realized as a friction noise fol-
lowing the release of the plosive, similar to the friction of the
sound /h/. Furthermore, the lowest level of grouping reflects
the high similarity of phonetic minimal pairs (i.e., voicing con-
trasts) among all plosive contrasts (i.e., /t, d/, /p, b/, and /k,
g/), but only two fricative contrasts (i.e., /s, z/ and /S, Z/). As
for the vowels, the lower-level grouping seems to reflect vowel
backness more than vowel height in both models, although only
a slight tendency to separate front vowels from back vowels can
be observed.

5.4. Correlation with feature-based phonetic distance

To study the degree to which our measure of (dis)similarity
(JSD) reflects phonetic distance, we correlate the distance among
phonetic distributions over discrete units against a measure of
feature-based phonetic distance. To this end, we map each pho-
netic category in the TIMIT inventory onto a discrete, multi-
valued feature vector based on the PHOIBLE feature set [26].
We then compute the feature-based distance as the Hamming
distance between their feature vectors. When we consider all
phonetic categories, we find a strong positive correlation be-
tween the JSD and feature-based phonetic distance in W2V2
(r = 0.63) and XLSR (r = 0.61). Surprisingly, the correlation

becomes stronger when we consider only the vowels in our anal-
ysis for both W2V2 (r = 0.77) and XLSR (r = 0.80), while it
becomes weaker for consonants in W2V2 (r = 0.47) and XLSR
(r = 0.43). The weaker correlation among the consonants could
be attributed to the high similarity between the phonetic distri-
butions of vowels and approximants in both W2V2 and XLSR,
and vowels and nasals in XLSR. The correlation coefficients
reported in this section are all Pearson’s r and significant with
p ≪ 0.001.

6. Discussion and Conclusion
We presented an information-theoretic framework for character-
izing the relationship between phonetic categories and discrete
units in self-supervised speech models. By representing each
phonetic category as a distribution over discrete units, we have
shown that the distribution entropy reflects the acoustic-phonetic
variability of the underlying speech sounds, with vowels being
more entropic on average than consonants. Moreover, phonet-
ically similar sounds have been found to exhibit similar distri-
butions, with the highest level of division separating obstruents
and sonorants. Our findings confirm the characterization of
discrete units as sub-phonemic events, rather than high-level
categories such as phonemes, which is consistent with the find-
ings of Wells et al. [9]. Given that speech sounds are dynamic
acoustic signals that vary considerably due to many factors such
as context and speaker, we argue that the characterization of
phonetic categories as distributions over sub-phonemic events
allows for a more nuanced understanding of the relationships
between phonetic categories and discrete units in self-supervised
speech models. Our presented analysis has a few limitations.
For example, since we do not control for the different sources
of variability of speech, it is difficult to disentangle the effect of
these sources on the entropy of the phonetic distributions. Future
work can further tackle this limitation with a controlled analysis
with respect to the speaker and context variations.
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