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Abstract

Pre-trained large language models, such as
ChatGPT, archive outstanding performance in
various reasoning tasks without supervised
training and were found to have outperformed
crowdsourcing workers. Nonetheless, Chat-
GPT’s performance in the task of implicit dis-
course relation classification, prompted by a
standard multiple-choice question, is still far
from satisfactory and considerably inferior to
state-of-the-art supervised approaches. This
work investigates several proven prompting
techniques to improve ChatGPT’s recognition
of discourse relations. In particular, we experi-
mented with breaking down the classification
task that involves numerous abstract labels into
smaller subtasks. Nonetheless, experiment re-
sults show that the inference accuracy hardly
changes even with sophisticated prompt engi-
neering, suggesting that implicit discourse re-
lation classification is not yet resolvable under
zero-shot or few-shot settings.

1 Introduction

Pre-trained language models have demonstrated su-
perior performance in various NLP tasks for years,
and recently prompt-tuning instead of fine-tuning
has become the dominant framework to make effi-
cient use of large language models (LLMs). LLMs
such as ChatGPT have demonstrated human-level
performance in various reasoning tasks under zero-
shot or few-shot settings using natural language
prompts as inputs (see e.g., OpenAI, 2023; Bang
et al., 2023). This has led to a wave of research in
prompt engineering to elicit the prediction potential
of LLMs (such as Wei et al., 2022; Kojima et al.,
2022).

In order to create metadata for textual analysis or
to train models for specific NLP tasks, researchers
have been relying on the annotation performed by
trained annotators or crowdsourced workers. Re-
cently, ChatGPT was shown to outperform crowd-
sourced workers in annotating political topics, affil-

iation, and policy frames (Gilardi et al., 2023; Törn-
berg, 2023). However, it is not yet clear whether
a similar prompting approach can also be success-
ful for classifying what discourse relation holds
between two text spans. Discourse relations (DRs)
are semantic-pragmatic links between clauses and
sentences. They can be explicitly marked by dis-
course connectives (DCs), such as however and
in addition, or they can be inferred from the text
without relying on a specific marker – such cases
are referred to as implicit relations. For example,
there is a causal relation between the following
sentences: Mary lost her keys. Therefore, she could
not enter her office., and the same relation can still
be inferred without the DC therefore.

Discourse relation analysis is useful for vari-
ous downstream tasks, such as summarization (Xu
et al., 2020; Dong et al., 2021) and relation extrac-
tion (Tang et al., 2021), and discourse-annotated
data serves as the basis of various linguistic re-
search (e.g. Sanders and Spooren, 2010). However,
classifying implicit DRs involves cognitive pro-
cessing that is difficult even for humans in different
languages (Oza et al., 2009; Zhou and Xue, 2012;
Poláková et al., 2013; Zeyrek et al., 2020; Hoek
et al., 2021) and poses a challenge for NLP (e.g.,
64.58% accuracy and 49.03% F1 on PDTB 2.0 in
Chan et al., 2023b), even with powerful LLMs.

Chan et al. (2023a) evaluated ChatGPT’s ability
to infer implicit DRs. They used a multiple-choice
prompt that lists all options of DR labels and in-
cluded in-context samples. They found that pairing
the DR options with typical DCs improves the per-
formance. However, even then, accuracy is still
far behind (e.g., 24.54% accuracy and 16.20% F1
on PDTB 2.0) the performance of state-of-the-art
supervised models. There could be several reasons
for this: the chosen prompts might not be opti-
mal, the LLM may not be able to deal well with a
14-way classification, or it may fail to build good
representations of discourse relations.
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The current work tests whether alternative
prompt designs, using formulations that have been
shown to work well in crowdsourced annotation
tasks with untrained humans, can produce more ac-
curate implicit DR annotation. First, we replicate
the methodology used by Chan et al. (2023a) with
the latest gpt-4 model and analyse the strengths
and weaknesses of the predictions. We then ex-
plore the benefits of breaking down the multi-way
classification task into individual prompts. We hy-
pothesize that this might be beneficial because a)
it reduces a choice between 14 options per prompt
into multiple prompts that each contain a binary
choice and b) because implicit DRs are inherently
ambiguous and multiple interpretations are often
possible depending on the reader’s perspective and
context (Rohde et al., 2016; Scholman et al., 2022).

We however found that sophisticated prompt
strategies did not improve the performance of Chat-
GPT’s inference of implicit DRs and the accuracy
still largely lags behind the state-of-the-art super-
vised models. This suggests that the implicit DR
recognition task is not yet solvable under a zero-
shot or few-shot setting.

2 Related Work

2.1 Lexicalized DR annotation

DCs are natural language signals for DRs, and have
been used by annotators to classify originally im-
plicit DRs. For example, the DC nevertheless can
be inserted between the two text spans that make
up a DR (known as the Arg1 and Arg2) to indi-
cate a concession relation. This approach has
been used in the creation of manually annotated
resources including the Penn Discourse Treebank
(PDTB, Prasad et al., 2008, 2019) and DiscoGeM
(Scholman et al., 2022).

A complicating factor in the annotation of DRs
is the fine-grainedness between DR types. Com-
pared with typical text classification tasks such as
entailment and stance detection, DR classification
involves a considerably larger range of labels, mak-
ing the task particularly challenging. For exam-
ple, the DR framework PDTB (Prasad et al., 2008,
2019) defines 36 DR sense labels arranged in a
three-level hierarchy, which can be lexicalized by
one of 184 connectives. Previous annotation ef-
forts for implicit relations report inter-annotator
agreement scores of κ=0.58 (Hoek et al., 2021)
and κ=0.47 (Zikánová et al., 2019) between expert
annotators, and κ=0.55 between aggregated crowd-

sourced and expert annotation (Scholman et al.,
2022).

Untrained human annotators also struggle when
given a large choice of different relations or con-
nectives. The DiscoGeM corpus was therefore an-
notated using a “two-step DC insertion method”
(Yung et al., 2019), where the crowd annotators
first freely type a linking phrase that represents the
relation between two consecutive sentences and
then disambiguate this intuitive choice by selecting
from a list of DC options dynamically generated
based on the first DC. This approach lexicalizes
DRs into natural language for untrained workers
who are not familiar with DR labels.

While general-purpose generative LLMs such
as ChatGPT might have seen discourse relation
labels as part of their training data, they could nev-
ertheless profit from a connective-based annotation
approach, as their exposure to connectives in nat-
ural language is much higher. We thus evaluate
the two-step DC insertion method on generative
LLMs.

2.2 Supervised models for DR recognition

Given that explicit as well as originally implicit
relations are annotated with a connective in the
PDTB, earlier work has explored the use of both
explicit and annotated DCs for implicit DR recog-
nition (e.g., Marcu and Echihabi, 2002; Sporleder
and Lascarides, 2008; Xu et al., 2012; Rutherford
and Xue, 2015; Ji et al., 2015). In combination
with modern LLMs, DC prediction was found to be
an effective sub-task for which the LLMs are fine-
tuned to identify implicit DRs (Shi and Demberg,
2019; Kishimoto et al., 2020; Jiang et al., 2021;
Kurfalı and Östling, 2021; Liu and Strube, 2023).

Recent improvements in supervised implicit DR
recognition use prompt tuning based on pre-trained
LLMs. Typically, the prompt includes a template
where the connective between two input sentences
is to be predicted (Xiang et al., 2022; Zhao et al.,
2023; Wu et al., 2023). Other works also evaluated
left-to-right generational prompts such as the con-
nective between Arg1 and Arg2 is ... (Zhou et al.,
2022) or the sense between Arg1 and Arg2 is ...
(Xiang et al., 2023). A list of less ambiguous con-
nectives were selected to verbalize each DR sense
label. In addition to DCs, hierarchical information
of the sense labels was also found to be effective to
classify DR senses (Zhao et al., 2023; Chan et al.,
2023b; Jiang et al., 2023).



2.3 Natural language prompts for
zero/few-shot inferences

LLMs have demonstrated impressive performance
in reasoning tasks with/without in-context exam-
ples. This has fostered extensive research on ef-
fective ways to design natural-language prompts
to query LLMs. For example, it was found that
prompting the LLMs to provide explanations is
useful (Reynolds and McDonell, 2021; Lampinen
et al., 2022). In particular, the generation of in-
termediate reasoning steps before the final answer
(Chain-of-Thought, Wei et al., 2022) can signifi-
cantly improve the performance, even without few-
shot examples (Kojima et al., 2022). Subsequent
works further investigated how the reasoning steps
could be verified (Wang et al., 2022; Wang and
Zhao, 2023) and decomposed (Yao et al., 2023;
Besta et al., 2023). In particular, Dhuliawala et al.
(2023) found that verification questions are typi-
cally answered with higher accuracy than the origi-
nal question. The current work therefore also inves-
tigates the effectiveness of formulating DR classifi-
cation prompts directly as verification questions.

It is yet unclear if zero-shot prompting ap-
proaches can also be applied to abstract and sub-
tle linguistic interpretations, which additionally re-
quire world knowledge, like discourse coherence.
Related to our work, Ostyakova et al. (2023) com-
pare human and ChatGPT’s annotations of dia-
logue functions. They found that decomposing
the 32-way classification task to a tree of binary
questions largely improves the inference perfor-
mance. However, the development of the struc-
tural prompts involves heavy engineering, and the
methodology was only evaluated on a small subset
of 189 utterances. We investigate alternative meth-
ods to disassemble the established task of implicit
DR recognition and evaluate the LLM’s perfor-
mance against large samples of expert-annotated
and crowdsourced data.

2.4 Zero / few-shot DR annotation

To our knowledge, Chan et al. (2023a) is the only
work that has investigated the zero-shot perfor-
mance of LLMs in DR recognition. They evalu-
ated ChatGPT’s performance in the classification of
DRs in PDTB 2.0 and DiscoGeM using a multiple-
choice template that lists the 11 Level-2 and 18
Level-3 DR label options of the two corpora re-
spectively. It was found that most explicit DRs
could be recognized correctly (F1 > 60% for most

DR types). However, the performance for implicit
DRs was much poorer. It achieved 16.20% F1 and
24.54% accuracy on 11-way Level-2 classification
of the PDTB 2.0 Ji-test set and F1 < 15% for most
DR types, considerably lagging behind the SOTA
supervised model (49.03% F1 and 64.58% accu-
racy, Chan et al., 2023b). Pairing the relation label
options with typical DCs was shown to improve the
performance while the few-shot performance var-
ied depending on the in-context examples provided
and could degrade the performance significantly.
We re-ran their prompts using GPT-4 for compari-
son.

In addition, the performance of prompt-based in-
ference has been shown to differ strongly between
different relation subsets. Among the DRs defined
in PDTB (see Table 1), causal and temporal rela-
tion reasoning are established as separate tasks with
dedicated datasets, such as COPA (Gordon et al.,
2012) for causal relations and TB-Dense (Cassidy
et al., 2014) for temporal relations. The formats
and designs of these tasks and datasets are not the
same as the DR recognition tasks: typically, the
task asks for more fine-grained causal or temporal
relations, given that the relations are present in the
text. Chan et al. (2023a) showed that ChatGPT
outperforms supervised baselines in causal relation
detection, but underperforms in temporal relation
classification. Gao et al. (2023) instead reported
that ChatGPT can be biased to over-predict causal-
ity, depending on the prompting format, and can
only capture explicit causality.

3 Methodology

Prompting LLMs to classify among specific labels
typically requires listing all valid options. The
input becomes even longer when an example per
class is included for in-context learning. Instead,
we propose several methods to break down the 14-
way DR classification task into smaller sub-tasks,
which are described in details below.

3.1 Two-step DC insertion prompt

This approach adapts the two-step method used to
crowdsource DR annotations Yung et al. (2019)
into a two-step prompt. In the first step, the LLM
is prompted to generate a word or phrase that repre-
sents the relation between two given arguments. As
a continuous conversation, a second prompt asks
for a forced choice among a subset of options. The
provided options are based on the free insertion in



the first step, following the mapping used in the
original crowdsourcing method. For example, how-
ever could be generated in the first task, but it can
ambiguously signal a CONTRAST or CONCESSION

relation. The second step, which is a forced choice
between despite and in contrast, serves as a verifi-
cation question to identify fine-grained DRs. An
example of the input and output is shown in Figure
6 in Appendix B.

This method assumes that DRs can be inter-
preted and produced through the lexical seman-
tics of DCs and does not require specific training
about the definitions of the DRs. As in the orig-
inal crowdsourcing method, we did not include
in-context examples in the prompt1.

3.2 Per-class binary prompt

This method decomposes the multi-way DR clas-
sification task into independent binary prompts,
e.g., "does the discourse relation between the pro-
vided arguments represent a ASYNCHRONOUS re-
lation?". One binary question is used for each class,
so 14 prompts are necessary for each instance of
DR (for the 14 Level-2 DR sense defined in PDTB
3.0). A short description of the relation type, taken
from the annotation manual (Prasad et al., 2007),
is also included (see Figure 7 for an example). For
each binary question, one positive and one negative
example, also taken from the annotation manual, of
the particular relation are provided in the prompt:
the positive example is the demonstrative exam-
ple of the relation and the negative example is the
demonstrative example of another relation type that
has a different top-level sense category.

This method can produce multiple labels because
the GPT model can answer yes to several of the bi-
nary prompts. This is particularly relevant to DR
inference because multiple DRs can co-occur and
simultaneously be interpreted by different reason-
ing traits (Scholman and Demberg, 2017). In the
crowdsourced DiscoGeM corpus, most relations
are annotated with two or more DR senses (see Ta-
ble 3), against which the multiple predicted labels
can be compared.

It is nonetheless necessary to combine the an-
swers of the binary prompts into a single DR label
in order to compare with the single gold labels in
PDTB. We use the multiple-choice (MC) prompt

1This decision is also because we found that, as reported
in previous work (Chan et al., 2023b), the LLM’s prediction
varies a lot depending on the examples provided in the prompt,
adding more uncertainty to the effectiveness of the prompt.

(Chan et al., 2023a) that lists all DR options that
were answered with "yes" in the binary questions
and ask for the best choice among the given op-
tions. In case all DR senses were answered with
"no", all the options are provided in the MC step.
The input and output of all the binary questions are
included in the context. An example of the input
and output is shown in Figure 7 in Appendix B.
We also tried asking for a confidence score for the
answer to the binary questions, as documented in
Figure 7. However, since nearly all answers were
assigned the same confidence score, we ignored
these scores in the subsequent analyses.

3.3 Per-class verification prompt

This method also breaks down the multi-way clas-
sification task into individual per-class prompts,
but instead of a straightforward yes-no question,
we formulate the binary question as a verification
question. To do so, we make use of the hierarchical
nature of the DR senses. For example, to classify
whether an instance is a ASYNCHRONOUS relation,
we ask "which argument (Arg1 or Arg2) describes
an event that precedes the other? Options: Arg1,
Arg2, None", where the answers Arg1 and Arg2
correspond to the ASYNCHRONOUS sub-classes
SUCCESSION and PRECEDENCE respectively2. The
instance is classified as a ASYNCHRONOUS relation
if either ARG1 or ARG2 is generated.

In other words, the answer to the verification
question provides an explanation to justify the
sense of the DR without stating the label, e.g. Arg1
describes an event that precedes Arg2, (that’s why
the relation between Arg1 and Arg2 is CAUSAL).

Similarly, one positive and one negative exam-
ple, in the form of the verification questions, are
included in each binary prompt and a multiple-
choice prompt is used to choose the best option
from the multiple positive answers. An example of
the per-class verification prompt is shown in Figure
8 in Appendix B.

4 Experiment

We conduct our experiment using the state-of-
the-art version GPT model from OpenAI gpt-4
(queried in December 2023). The experiments are
implemented using the API provided by OpenAI.

2For the non-directional senses such as CONJUNCTION and
SYNCHRONOUS, we derived verification questions based on
finer-grained definitions of these senses, e.g., are the situations
in Arg1 and Arg2 completely, partially or not overlapped in
terms of time?



We evaluate the results against the annotations in
PDTB 3.0 and DiscoGeM.

4.1 Data

PDTB 3.0 is the largest discourse-annotated re-
source in English. The texts are news articles from
the Wall Street Jounals. We evaluate our method to
classify 14 Level-2 relation types with more than 10
instances in the sections 21 and 22 of the PDTB3.0
(i.e. the Ji-testset), following the setup of previous
works (Kim et al., 2020; Xu et al., 2023). Most
items in the PDTB 3.0 are labelled with a single
DR labels but a number of relations are annotated
with two labels.

DiscoGeM 1.0 is a crowdsourced discourse re-
source in English that includes texts from mul-
tiple genres: European Parliament preceedings,
Wikipedia articles, and literature. Each implicit
DR in the corpus was labelled by 10 crowdwork-
ers, following the sense definitions of PDTB 3.0
and using the two-step DC insertion method (Yung
et al., 2019). We evaluate our method to classify
Level-2 relation types with over 10 instances in the
test set of the corpus,3 excluding instances with the
majority label DIFFERENTCON, which means the
DR sense is undetermined.

The predicted DR sense of each instance is com-
pared against 1) the single majority label, which is
the label that has the most votes. In case of a tie,
one of the most voted labels are randomly selected;
and 2) the multiple majority labels, which is the set
of labels that have two or more votes. If none of the
labels have two or more votes, the single majority
label is used. The distributions of the labels in both
test sets are shown in Table 1.

4.2 Baseline

Chan et al. (2023a) evaluated the MC prompt on
11 PDTB 2.0 Level-2 relations and 18 DiscoGeM
Level-3 relations, using the gpt-3.5-turbo model of
ChatGPT. We reran this standard prompt to clas-
sify 14 PDTB 3.0 Level-2 senses and 7 DiscoGem
Level-3 senses, using gpt-4. Specifically, we use
the classification prompt where each DR option is
paired with a typical DC. Since the performance
with in-context examples was found to be unstable
and would require extra long inputs, we did not
include examples in this implementation. We mod-

3The count is based on the single majority label. The
included 7 Level-2 relation types are also the most frequent
relation types in the whole corpus.

Level-1.Level-2 labels PDTB DG sing multi.
Comparison.Concession 96 77 16
Comparison.Contrast 53 26 6
Contingency.Cause 384 402 116
Contingency.Cause+Belief 14 - -
Contingency.Condition 14 - -
Contingency.Purpose 59 - -
Expansion.Conjunction 236 382 125
Expansion.Equivalence 30 - -
Expansion.Instantiation 123 58 5
Expansion.Level-of-detail 208 207 48
Expansion.Manner 17 - -
Expansion.Substitution 25 - -
Temporal.Asynchronous 102 100 27
Temporal.Synchronous 35 - -
2 labels 67 0 589
3 labels 0 0 282
4 labels 0 0 38
Total 1463 1252 1252

Table 1: Distribution of the level-2 labels in the
PDTB 3.0 Ji testset and the DiscoGeM 1.0 testset

ified the options from the 11 PDTB 2.0 Level-2
labels to the 14 PDTB 3.0 labels and refined the
DCs attached to the DR options, by including DCs
for both sub-types of Level-2 labels (e.g., before /
after for a ASYNCHRONOUS relation); or using less
ambiguous connectives (e.g., in contrast instead of
however for CONCESSION). The prompt template
is shown in Figure 5 in Appendix B.

Following Chan et al. (2023a) and other previ-
ous works on supervised implicit DR classification,
we prompt the LLM to generate DR labels given
the two identified arguments according to the orig-
inal corpus annotation. The retrieval of implicit
DR arguments in DiscoGeM is trivial, because they
are defined as two consecutive sentences that are
not connected by an explicit DC. PDTB 3.0, how-
ever, also includes intrasential implicit DRs and
the identification of these DRs and their arguments
require another annotation step. Before validating
the possibility of a fully automated discourse anno-
tation pipeline, we focus on implicit DR annotation
under a simplified setup.

4.3 Results

4.3.1 Evaluation on single-sense DRs

First, we look at the comparison of different meth-
ods evaluated against PDTB 3.0, which is shown in
Table 2. In addition to the baseline MC prompt, we
also compare the results with three generic base-
lines: random, always CONJUNCTION, and always
CAUSE. The latter two DR types are the most com-
mon categories of implicit DRs in both corpora.
In addition, the performance of state-of-the-art su-



pervised models for implicit DR classification are
listed as a reference.

The following can be observed from Table 2:

1. inference by gpt-4 achieves only about half
of the performance of the supervised models
(36.84% vs. 67.84% on Level-2 accuracy);

2. the two-step DC insertion prompt performs
poorly, achieving less than half of the perfor-
mance of other prompts (15.52%);

3. the per-class verification + MC aggregation
method performs similarly with the baseline
14-way MC prompt (36.98% vs 36.84%),
while the per-class binary method significantly
underperforms (30.69%).

Chan et al. (2023a) reported that the per-class
predictions by the standard multi-way MC prompt
achieved an accuracy of 20.31% and F1 of 10.73%
for the 11-way classification of Level-2 senses in
PDTB 2.0, using gpt-3.5-turbo. For the 14-way
classification of the PDTB 3.0 senses, using gpt-4,
the accuracy and F1 are 36.84 and 26.12 respec-
tively, which have considerably improved but are
still far from a level of satisfactory reliability.

Table 3 compares the per-class precision, recall
and F1 scores between the 14-way MC prompt
and the per-class verification + MC aggregation
prompt, and Figure 1 shows the corresponding con-
fusion matrices of the predicted and gold labels in
the PDTB 3.0 test set items. It can be observed
that the precisions are generally higher than the re-
calls, but the performances are drastically different
among different classes, ranging from 0% F1 for
MANNER to 61− 68% F1 for PURPOSE. The per-
class performance of the two methods is similar.
The main difference is the better performance of
the MC method on CAUSE and of the verification
method on CONJUNCTION.

Some confusion patterns are similar to those of
humans (Robaldo and Miltsakaki, 2014; Sanders
et al., 1992; Scholman and Demberg, 2017). For
example, the confusion between CONTRAST and
CONCESSION and CAUSE and CAUSE+BELIEF –
CONCESSION and CAUSE+BELIEF were hardly pre-
dicted at all. In general, there is particular confu-
sion with CAUSE and LEVEL-OF-DETAIL relations
(darker column on these two relations in the left
matrix, Figure 1). Specific verification prompts to

4https://github.com/openai/tiktoken

tease apart these easily confused relations could
potentially improve the performance.

The poor performance of the two-step DC inser-
tion method suggests that ChatGPT cannot infer
DRs in a fully lexicalized manner based on DCs
similar to humans. It is necessary to explicitly spec-
ify the link between the DCs and the DR labels, as
in the MC prompts.

The underperformance of the per-class binary
prompt is due to too many labels being rejected in
the binary question step. The soft-match accuracy
of 53.79 means that in nearly half of the questions,
ChatGPT answered "no" to the correct relation in
the first step. In fact, in about one-tenth of the
questions in the PDTB data, all relation senses
received the output "no". This suggests that it is
necessary to adjust the threshold of detecting a
particular relation sense, which is not trivial to
prompt.

The performances of the MC prompt and the per-
class verification prompt were found to be similar,
as seen in Table 3 and Figure 1 and 2. However,
the MC prompt should be preferred since the cost
of using the API, based on the number of prompts
or the input tokens required for each item, is 15
times less. While the F1 scores suggest that the
MC-prompt is stronger in detecting CONJUNCTION

and the per-class verification method is stronger in
CAUSE, the accuracies of both methods are too low
to produce useful inferences for downstream tasks.

4.3.2 Evaluation on multi-sense DRs
One potential advantage of the per-class prompting
methods over the MC prompt is the possibility of
producing multiple labels by skipping the last MC
step. It is not uncommon that several DR senses
can be interpreted depending on the reader’s per-
spective and multiple DR sense labels represent the
semantics of the DR better.

In Table 2, we see that the per-class verification
method, without the multi-way MC step, reaches
soft-match accuracy of 89.33%. However, 7.67
labels are predicted on average, and it is unclear
how many of the predicted senses are actually valid.
To further analyze the performance of ChatGPT’s
inference multi-sense DRs, we turn to the results
of the crowdsourced DiscoGeM data.

Table 4 compares the MC prompt and the per-
class verification prompt with various baselines5

and Table 5 compares the per-class F1s of the two
5Few supervised models have been evaluated on Disco-

GeM and none of them are on a 7-way setting.

https://github.com/openai/tiktoken


PDTB 3.0 (Ji-test)
per-item avg. input Level-1 4-way Level-2 14-way

Models prompts tokens macro F1 Acc. macro F1 Acc.
supervised models
GOLFlarge (Jiang et al., 2023) - - 74.21 76.39 60.11 66.42
PEMI (Zhao et al., 2023) - - 69.06 73.27 52.73 63.09
CP-KDlarge (Wu et al., 2023) - - 75.52 78.56 52.16 67.84
baseline
random - - 24.24 33.08 6.34 7.66
all CONJUNCTION - - 15.75 47.44 1.97 16.20
all CAUSE - - 12.68 35.89 3.04 27.75
1) 14-way MC (Chan et al., 2023a) 1 245 45.80 50.03 26.12 36.84
2) two-step DC insertion 2 99 23.44 30.49 6.02 15.52
3) per-class binary (avg. 3.62 labels) 14 2597 - (61.52) - (53.79)
+ multi-way MC 1 120 41.76 47.16 19.66 30.69

4) per-class verification (avg. 7.67 labels) 14 3873 - (95.56) - (89.33)
+ multi-way MC 1 167 47.53 52.84 25.77 36.98

Table 2: Results of the PDTB 3.0 Ji-testset. The average input token counts are calculated using the BPE tokenizer
provided by OpenAi4. The 4-way Level-1 evaluation is calculated by mapping the Level-2 predictions to Level-1
based on the sense hierarchy. To calculate the accuracy, a prediction is counted as correct if it matches one of the
gold labels. Values in brackets refer to soft-match scores: any overlap between the predicted multiple labels and the
gold labels is counted as correct.

14-way MC per-class vf.
labels P R F1 P R F1
Conjunction .52 .27 .36 .50 .49 .49
Cause .49 .45 .47 .49 .37 .42
Cause+Belief .10 .07 .08 .00 .00 .00
Condition .02 .07 .03 .02 .07 .03
Purpose .55 .90 .68 .50 .79 .61
Contrast .14 .54 .22 .14 .42 .21
Concession .17 .01 .02 .14 .03 .05
Asynchronous .23 .60 .33 .26 .58 .36
Synchronous .14 .28 .19 .12 .21 .15
Level-of-detail .56 .11 .18 .48 .10 .17
Instantiation .50 .51 .51 .44 .51 .47
Equivalence .55 .20 .29 .24 .33 .28
Manner .00 .00 .00 .00 .00 .00
Substitution .27 .32 .29 .45 .30 .36
macro F1 .26 .26

Table 3: F1 scores on PDTB 3.0 Level-2 label prediction
with the 14-way MC prompt and the per-class verifica-
tion + MC aggregation method

prompting methods evaluated against the single
gold sense label. In addition, we also evaluated the
predictions against multiple gold sense labels. In
the DiscoGeM test set, each item has one to three
labels (see Table 1). We calculate the per-item F1
score, which is the harmonic mean of precision and
recall of the multiple predicted labels compared
with multiple gold labels of each item6.

It can be observed in Table 4 that:

6The average per-item F1 equals the accuracy if there are
always one gold label and one predicted label. The macro F1
score, which is the arithmetic mean of all the per-class F1s,
could not be calculated when most labels have multiple gold
classes. In Table 3 and Figures 1 and 2, items with two gold
labels (< 5% in the PDTB 3.0 test set) were treated as two
separated items.

1. the accuracy of ChatGPT’s prediction is even
lower in DiscoGeM, compared with PDTB 3.0
(32.67% v.s. 36.84% with the MC prompt),
and is similar to the all CONJUNCTION and
all CAUSE baselines;

2. the per-class verification + MC aggregation
method underperforms the 7-way MC prompt
(30.83% v.s. 32.67%);

3. the multiple predicted labels by the per-class
verification without MC aggregation method
considerably overlap with the multiple gold
labels (average per-item F1 50.63%).

The lower accuracy on DiscoGeM can be at-
tributed to the highly skewed label distribution, as
seen in Table 1. CAUSE and CONJUNCTION each
covers one-third of the relations in the data, such
that the accuracy of these relations is highly re-
flected in overall accuracy despite similar per-class
performance. On the other hand, the lower ac-
curacy of the results by the per-class verification
is due to the lower F1 scores of the LEVEL-OF-
DETAIL and CONCESSION in this dataset.

Evaluation against the single majority label of
DiscoGeM involves a certain level of randomness
since one of the majority labels is randomly se-
lected when two or more labels have the maximum
number of votes. The multiple gold labels, on the
other hand, are based on a threshold; they include
all labels receiving 20% or more votes among the
10 votes per item. We thus turn to the evaluation



DiscoGeM testset
avg. Level-1 single Level-2 single Level-2 multi

per-item input 4-way 7-way avg. per-
Models prompt tokens macro F1 Acc. macro F1 Acc. item F1 Acc.
baseline
random - - 24.20 29.63 12.99 13.18 17.22 (26.99)
all CONJUNCTION - - 17.12 51.68 6.76 30.51 36.91 (55.27)
all CAUSE - - 12.12 32.11 6.93 32.11 34.91 (52.72)
7-way MC (Chan et al., 2023a) 1 231 41.21 45.52 27.87 32.67 35.28 (52.16)
per-class verif. (avg. 3.87 labels) 7 2473 - (90.34) - (80.51) 50.63 (92.81)
+ multi-way MC 1 184 37.68 44.41 24.08 30.83 32.61 (47.84)

Table 4: Results of the DiscoGeM test set. The predicted Level-2 labels are evaluated against the single majority
labels at two levels (Level-1 single and Level-2 single), and against the multiple majority labels at Level-2. Values
in brackets refer to soft-match scores: any overlap between the predicted multiple labels and the gold labels is
counted as correct. Average per-item F1 is the F1 score of the multiple predicted labels compared with the multiple
gold labels of each item, averaged by the total number of items.

7-way MC per-class vf.
labels P R F1 P R F1
Conjunction .53 .29 .38 .56 .35 .43
Cause .58 .30 .39 .58 .23 .33
Contrast .05 .62 .10 .09 .54 .15
Concession .24 .10 .14 .0 .0 .0
Asynchronous .31 .76 .44 .21 .91 .33
Level-of-detail .32 .33 .33 .26 .10 .15
Instantiation .21 .16 .18 .20 .59 .29
macro F1 .28 . 24

Table 5: F1 scores on DiscoGeM Level-2 label pre-
diction with the 14-way MC prompt and the per-class
verification + MC aggregation method

against the multiple Level-2 gold labels of Disco-
GeM, which is shown in the right two columns of
Table 4.

The soft-match accuracies, in brackets, are not
directly comparable with the accuracies of sin-
gle prediction against single gold labels because
the chance agreement is higher. Nonetheless, the
soft-match accuracy of the multiple labels, which
are 3.87 labels on average, reaches 92.83%. This
means that in most cases the predicted labels over-
lap with the senses of the DRs. The average per-
item F1 is 50.63%, which is not too far from that
between crowdsourced and expert multi-label an-
notations, which was found to be 58% in a subset
of the DiscoGeM corpus.

5 Discussion and conclusion

We set out to test ChatGPT’s ability to infer im-
plicit DR senses with the latest model and care-
fully engineered prompts. Unfortunately, the low
performance of implicit DR recognition could not
be improved by sophisticated prompt engineering
techniques that were successful in other tasks. This
points to the fact that either other prompting tech-

niques are needed, or that implicit DR recognition
simply cannot be solved under zero-shot or few-
shot settings. Knowledge acquired in other reason-
ing tasks does not seem to be transferrable to this
task and supervised guidance to map the semantics
of the arguments to the ambiguous and abstract DR
labels is necessary.

We also performed smaller-scale experiments
with other LLMs such as LLaMA (Touvron et al.,
2023) but the performance was substantially worse
even than gpt-3.5. The training data of these other
LLMs do not include PDTB nor DiscoGeM. We
found that ChatGPT is able to produce PDTB 2.0
labels even when the options are not provided in
the prompt, suggesting that its training data should
have at least included texts related to PDTB-style
DR analysis (e.g., possibly an annotation manual or
research article). Therefore, strictly speaking, the
inference made by ChatGPT is not completely zero-
shot because it is informed about the DR labels.
This may explain why the two-step DC insertion
prompt, which does not involve any DR labels at
all, totally failed in the task.

The underperformance of the per-class binary
prompt suggests that prompting the discriminative
comparison among all possible options at once is
more accurate than separate detection of individ-
ual DR sense. Too many relation senses were re-
jected when the model was presented with the bi-
nary choice of yes/no; some of these rejected senses
have been accepted when compared with an even
more unlikely sense.

The per-class approach, nevertheless, provides
a framework to collect multi-label annotations,
which is not only important to DR annotations but
also to other tasks like natural language inference



and sentiment analysis. We also experimented with
running the MC prompts multiple times with a
higher temperature setting, or explicitly asking for
multiple labels in the prompt. ChatGPT only oc-
casionally produced multiple labels in these cases,
possibly due to the dominance of single-label an-
notated data in its training history.

The better performance of the per-class ver-
ification approach compared with binary ques-
tions shows that the verification questions actu-
ally worked. This approach is related to chain-of-
thought prompting (Wei et al., 2022); the identifica-
tion of the arguments of the Level-3 sense justifies
the presence of the Level-2 relation. We will exper-
iment using this approach to refine the MC prompt.

Another direction is to develop other approaches
to disassemble the DR annotation task. Breaking
down the multi-way classification task into smaller
tasks was successful in dialogue structure annota-
tion (Ostyakova et al., 2023), using a heavily engi-
neered step-by-step scheme (e.g. > 6 steps, each
asking for specific features of the input). Such a
tailored annotation scheme might also be necessary
to prompt implicit DR annotations.

6 Limitations

One of the limitations of the experiments is that
we only queried the API once. There could be
variation in output between queries. In addition, the
findings of the prompting techniques are limited to
PDTB-styled DRs, and may not be generalized to
other frameworks or tasks. The experiment results
are based on the specific templates we used. We
did not implement nor compare other modifications,
such as the choice of DCs in the options, which
could potentially have an impact on the overall
findings.

7 Ethical consideration

OpenAI’s data collection complies with privacy
laws7. The PDTB 3.0 corpus is licensed under the
LDC User Agreement. The text comes from the
Wall Street Journal, which is publicly purchasable.
DiscoGeM is publicly available on GitHub. The
text comes from publicly available European parlia-
ment proceedings, Wikipedia articles, and novels.
The annotation crowd-sourcing was approved by
the Deutsche Gesellschaft für Sprachwissenschaft

7https://help.openai.com/en/articles/
7842364-how-chatgpt-and-our-language
-models-are-developed

ethics committee. However, we did not check
whether any of the raw texts contained any infor-
mation that names or uniquely identifies individual
people or offensive content, nor did we take any
steps to anonymize it.
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Figure 1: Confusion matrices comparing the gold and predicted labels in the PDTB 3.0 test set using the MC
prompt. The distribution in the left figure is normalized by the predicted class, i.e. the diagonal corresponds to the
precision; while the distribution on the right is normalized by the gold class, i.e. the diagonal corresponds to the
recall. The percentages in brackets are the overall distributions of the predicted and gold labels respectively.
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Figure 2: Confusion matrices comparing the gold and predicted labels in the PDTB test set using the per-class
verification prompt with the MC aggregation step.
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Figure 3: Confusion matrices comparing the single gold and predicted labels in the DiscoGeM test set using the
MC prompt.
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Figure 4: Confusion matrices comparing the single gold and predicted labels in the DiscoGeM test set using the
per-class verification prompt with the MC aggregation step.



B Appendix

All prompts have "You are a language expert." as
the system content.

Task: Identify the most suitable option from the list below
that describes the discourse relationship between the
following pair of arguments.

Argument 1: We’ve got a product.
Argument 2: If you want it, you can get it.

Options:
1. Temporal.Asynchronous, before / after
2. Temporal.Synchronous, at that time / while
3. Contingency.Cause, consequently / therefore
4. Contingency.Cause+Belief, considering this
5. Contingency.Condition, in that case / if
6. Contingency.Purpose, in order to / such that
7. Comparison.Contrast, on the contrary / in contrast
8. Comparison.Concession, despite this / even though
9. Expansion.Conjunction, in addition / also
10. Expansion.Instantiation, for example / for instance
11. Expansion.Equivalence, in other words
12. Expansion.Level-of-detail, specifically / in short
13. Expansion.Manner, how? / thereby
14. Expansion.Substitution, instead / rather

Answer: ?

Figure 5: MC prompt adapted from Chan et al. (2023a)

Free insertion step:
Write down the connective word/phrase that best reflects the
logical connection between these two arguments.

Argument 1: You build up a lot of tension.
Argument 2: Working at a terminal all the day.

Answer: ?

Forced-choice step:
Select an option from the below list that best expresses the
meaning of the phrase you have chosen in the first step.

Options:
1. in short
2. for the reason that
3. also

Answer: ?

Figure 6: Two-step prompt for implicit DR identifica-
tion. Step 2’s options are generated based on the free
generation of Step 1.

Binary step: one prompt is used for each DR class
(i.e. 14 prompts per each item. Here is an example
of the prompt for ASYNCHRONOUS).

Question: Does the discourse relationship between the
provided arguments represent an Asynchronous relation?

Description: Asynchronous relation describes a situ-
ation where one event is presented as preceding the other.

Argument 1: The Artist sticks to a daily routine...
Argument 2: At night he returns to the condemned...
Answer: Yes

Argument 1: The battle exceeds Justin’s...
Argument 2: “I had no idea I was getting in so deep,” says...
Answer: No

Argument 1: Capture the gaseous substance
Argument 2: And transport it to recycling center
Answer: ?

On a scale of 1-10, 1 being the lowest and 10 being
the highest, Please express your confidence level in the
prediction.

Multi-way MC step
Task: Identify the most suitable option from the list below
that describes the discourse relationship between the
following pair of arguments.

Argument 1: Capture the gaseous substance
Argument 2: And transport it to recycling center

Options:
1. Contingency.Cause, consequently / therefore
2. Expansion.Conjunction, in addition / also
3. Temporal.Synchronous, at that time / while

Answer: ?

Figure 7: Per-class binary prompt. Corresponding op-
tions (same as Figure 5) to the DRs answered with "yes"
in the binary step are listed as option in the MC step.



Verification question step: one prompt is used for
each DR class (i.e. 14 prompts per each item. Here
is an example of the prompt for CAUSAL.)

Consider the discourse relation between Arg1 and Arg2,
where Arg1 is "I trusted in his lordship’s wisdom" and
Arg2 is "I can’t even say I made my own mistakes." Which
argument (Arg1 or Arg2) gives the reason, explanation or
justification of the effect described in the other argument?
Options: Arg1, Arg2, None
Answer: Arg1

Consider the discourse relation between Arg1 and
Arg2, where Arg1 is ’What is greatness?’ and Arg2
is "What is dignity?" Which argument (Arg1 or Arg2)
gives the reason, explanation or justification of the effect
described in the other argument?
Options: Arg1, Arg2, None
Answer: None

Consider the discourse relation between Arg1 and Arg2,
where Arg1 is ’The chain is reviewing its product list’ and
Arg2 is ’to avoid such problems’ Which argument (Arg1 or
Arg2) gives the reason, explanation or justification of the
effect described in the other argument?
Options: Arg1, Arg2, None
Answer: ?

Multi-way MC step
Task: Identify the most suitable option from the list below
that describes the discourse relationship between the
following pair of arguments.

Argument 1: The chain is reviewing its product
list
Argument 2: to avoid such problems

Options:
1. Comparison.Contrast, on the contrary / in contrast
2. Expansion.Conjunction, in addition / also
3. Contingency.Purpose, in order to / such that

Answer: ?

Figure 8: Per-class binary prompt. Corresponding op-
tions (same as Figure 5) to the DRs not answered with
"none" in the verification question step are listed as
options in the MC step.


