
Evaluating humanness
in language models

Dissertation
zur Erlangung des akademischen Grades
des Doktors der Naturwissenschaften

der Fakultät für Mathematik und Informatik
der Universität des Saarlandes

vorgelegt von
Clayton Greenberg

Saarbrücken, 2023

Dekan der Fakultät MI: Prof. Dr. Roland Speicher
Vorsitzender: Prof. Dr. Josef van Genabith
Gutachter: Prof. Dr. Dietrich Klakow

Prof. Dr. Vera Demberg
Prof. Dr. Chris Callison-Burch

Akademischer Beisitzer: Dr. Heiner Drenhaus
Tag des Kolloquiums: 24 April 2024

Copyright ©2024 Clayton Greenberg
All rights reserved.

This publication is the original work of Clayton Greenberg except where otherwise
indicated. The image on the front cover was designed and created by Lauren Carlton.
Clayton Greenberg is the sole owner of all content that was not published elsewhere before
14 November 2023. Clayton Greenberg retains all rights regarding this publication.

This publication is protected by copyright. Clayton Greenberg grants to Saarland
University the minimal rights for electronic reproduction, storage, and transmission
according to section 13.1 of the Doctoral Degree Regulations for the Faculty of
Mathematics and Computer Science at Saarland University, dated 17 June 2020.

This publication was first published and printed in March 2024, so Clayton Greenberg does
not grant the printing rights mentioned in the same Doctoral Degree Regulations
document. Written permission must be obtained from Clayton Greenberg prior to any
other reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise.

ISBN: 9798884356313
Imprint: Independently published

Abstract

Advances with language models, systems that predict upcoming words in context, have en-
abled an era in which people sometimes cannot distinguish between human-written and
artificially created text. Perplexity, the simplest and most popular way to evaluate the qual-
ity of a language model, rewards any pattern captured by the system as long as it robustly
constrains the upcoming possibilities. By capturing patterns that humans do not use, op-
timizing a language model for minimal perplexity could trigger a divergence between the
most probable text and the most human-like text.
In this thesis, I argue that this divergence has happened for state-of-the-art languagemodels.
Part I characterizes the kinds of knowledge captured by language models. First, I present
three novel language model architectures whose neural connections were inspired by hu-
man behavior. Then, I discuss novel morphology- and sentiment-based paradigms that
capture human knowledge quantitatively. Part II establishes several methods for evaluating
language models by comparison against human behavior measures. I consider the suitabil-
ity and potential confounds for offline ratings and two paradigms of online reading times:
eye-tracking and G-Maze. Then, I use a novel dataset of G-Maze response times to show
computational and linguistic evidence of the divergence.

Kurzzusammenfassung

Fortschritte bei Sprachmodellen (LMs) - Systeme, die aus demKontext heraus nachfolgende
Worte vorhersagen - haben dazu geführt, dass Menschen manchmal nicht mehr zwischen
von Menschen geschriebenem und künstlich erzeugtem Text unterscheiden können. Per-
plexität (PPL), die einfachste und beliebtesteMethode zur Bewertung derQualität eines LM,
belohnt jedes vom System erfasste Muster, solange es die kommenden Möglichkeiten stark
einschränkt. Durch die Erfassung von Mustern, die Menschen nicht verwenden, könnte
die Optimierung eines LM hinsichtlich minimaler PPL zu einer Divergenz zwischen dem
wahrscheinlichsten Text und dem menschenähnlichsten Text führen.
In dieser Arbeit wird argumentiert, dass diese Divergenz bei modernen LMs aufgetreten ist.
Teil I charakterisiert die Arten von Wissen, die von LMs erfasst werden. Zuerst werden drei
neue LM-Architekturen beschreiben, deren neuronale Verbindungen von menschlichem
Verhalten inspiriertwurden. Danachwerdenneuartigemorphologie- und sentiment-basierte
Paradigmen diskutiert, die menschliches Verhalten quantitativ erfassen. In Teil II wer-
den mehrere Methoden entwickelt, die LMs durch Vergleich mit menschlichen Verhaltens-
maßen bewerten. Diskutiert werden die Eignung und mögliche Störfaktoren für Offline-
Bewertungen und zwei Paradigmen vonOnline-Lesezeiten: Eye-Tracking undG-Maze. Ein
neuartiger Datensatz der G-Maze-Antwortzeiten wird dazu verwendet, um rechnerische
und sprachliche Beweise für die Divergenz zu liefern.

Acknowledgment

To my advisor, Dietrich Klakow: I wrote five lines of MATLAB code to get your attention.
Plenty of unexpected things happened after this, notably: deriving least squares regression
spontaneously during your interview, approximating “success” as having enough equations
and numbers to fill a 30 minute meeting, and seeing that you booked my office hours when
we had not touched base in a while. But all those years ago when I wrote that code, I did it
because I felt that I had found a professorwith the perfectmixture of perspective, persistence,
and patience to see me through a doctorate. I was right. Every day, I feel lucky that you were
my advisor. Giving me the support and time to do this on my terms was the greatest gift I
could have asked for. Thank you, immensely, for everything.
Tomymentor, VeraDemberg: It still amazesme how quickly, and seemingly effortlessly, you
can take some scientific idea, agenda, or issue to a deeper level. Thank you for recognizing,
within a few minutes, my Pi Day reference in my qualifying exam email announcement.
Thank you for the four other brief moments that resulted in four chapters in this thesis.
Thank you for the ordinary and fun moments, too.
Thank you to Chris Callison-Burch for offering local support as I completed this work.
Thank you tomybrilliant collaborators: MatthewCrocker, HeinerDrenhaus, YoussefOualil,
Asad Sayeed, Anna Schmidt, Xiaoyu Shen, Les Sikos, Mittul Singh, and Michael Wiegand.
It was a pleasure getting to know you, working with you, and living life with you.
Thanks to our student assistant Adam Kusmirek who trained several language models used
in Chapter 11, maintained the graphical user interface for our language modeling software,
and extended the software itself to support neural language models.
“This workwas funded by theGermanResearch Foundation (DFG) as part of the Collabora-
tive Research Center on Information Density and Linguistic Encoding (IDeaL, SFB 1102).”
But beyond the mandated affiliation line, thank you to Elke Teich, speaker of the SFB and
my SFB mentor; thank you to the Language Model Users Group for countless insights and
inspirations, thank you to Alessandra Zarcone, for wisdom and lasagne; thank you to my
fellow inaugural PhD representatives David Howcroft and Ekaterina Kravtchenko; thank
you to our sensational coordinators, Marie-Ann Kühne and Patricia Borrull Enguix. I am
so proud to have been part of this astute, passionate, and loyal community of scholars.
I acknowledge theCluster of Excellence on “MultimodalComputing and Interaction” (MMCI)
for printing several posters about the work contained in this thesis.
Thank you, Robert Fieldhouse, for exploring transformers with me.
Thank you, Andre Schmeißer and Steffen Türk, for helping with translating my abstract.
Thank you to my friends for enriching my life, especially Yoav Binoun, for letting me give a
best man speech in English at his wedding…to be comprehended by 10% of the guests.
I dedicate this work to my family: Linda Greenberg, Fred Greenberg, and Aaron Garrett.
You are my everything.

Co-authoring

In Chapter 1, Section 1.1.1 came from Singh, Greenberg, and Klakow (2016), and a little of
Section 1.1.2 came from Oualil et al. (2016a,b). All other parts are unpublished. I claim that
all scientific writing and intellectual contributions of this chapter aremine and do not reflect
the opinions of my co-authors.
Chapter 2 is based on Singh, Greenberg, and Klakow (2016). I was not involved in imple-
menting this model. However, I wrote the majority of the paper based on an unpublished
report. As such, most of the words are mine. My individual contributions to this project
were scientific writing, mapping themathematics of themodel to my own theory that words
should each have their own decay profile, and linguistic analysis. I claim that, in all, this
amounts to 50% of the paper.
Chapter 3 is based on Oualil et al. (2016a). I did not implement the model. Youssef Oualil
wrote the majority of the paper. My individual contributions to this project include devel-
opment of the architecture i.e. deciding which connections to include in the network and
development of my own theory that the components of a context vector should be parti-
tioned according to the distance of the history, with smaller regions for more distant his-
tory. Additionally, my individual contributions include developing programmatic pipelines
for evaluation of word similarity / relatedness, and editing of scientific writing. I claim that,
in all, this amounts to 50% of the paper.
Chapter 4 is based on Oualil et al. (2016b). I did not implement the model. Youssef Oualil
wrote the majority of the paper. My individual contributions to this project were develop-
ment of a methodology that quantifies the extent to which a document representation has
shifted sentence-by-sentence, interpretation of the results from this methodology, recog-
nizing and explaining the interactions among components of an LSRC node, and linguistic
analysis. I claim that, in all, this amounts to 25% of the paper.
Chapter 5 contains Singh et al. (2016). I had a secondary role in implementing the model.
Mittul Singh wrote the majority of the publication. My individual contributions were lin-
guistic analysis, especially the challenges of adapting the pipeline to languages fromdifferent
families, interpretation of results, and editing of scientific writing. I claim that, in all, this
amounts to 50% of the original publication. In Section 5.5, I report a follow-up study that
was solely my work and not part of the publication. I 100% wrote and submitted a work-
shop paper based on this follow-up study. The workshop accepted the paper, but then the
workshop was cancelled without publishing its proceedings.
Chapter 6 is based on Wiegand et al. (2018). My contributions were confined to discus-
sions of the pipeline and recommendations for fine-tuning word embeddings for the task. I
claim that, in all, this amounts to 25% of the paper, especially as there were no other student
authors on this paper.
I wrote all text before the first section of each chapter to situate the chapter within this thesis.
These texts do not appear in the publications.

Co-authoring for Part II

Chapter 7 is based on Shen et al. (2017). I did not collect or process the data. While Xiaoyu
Shen wrote a majority of the publication, I substantially rewrote it for this thesis chapter. My
individual contributions to this project were experimental design, interpretation of results,
and scientific writing. I claim that, in all, this amounts to 50% of the original publication.
Chapter 8 has not yet been published elsewhere. It was solely my work.
Chapter 9 has not yet been published elsewhere. It was solely my work.
Chapter 10 contains some of Sikos et al. (2017). Specifically, in Section 10.1, “my coauthors”
represents Les Sikos and Heiner Drenhaus, supervised by Matthew Crocker. Given that
we published in a psycholinguistics venue, we agreed that Les Sikos should be first author
because he ran the human experiment. I also did not develop the stimuli. Section 10.2.1
describes parts of Sikos et al. (2017) that were solely my work, which I claim was 50% of the
original paper, especially as there were no other student authors on this paper. The other
sections of Chapter 10 are solely my work and unpublished.
Chapter 11 contains a small amount of Sikos et al. (2017), as well. I manually reordered,
processed, and analyzed the data following the publication. I also re-produced all figures on
my own. All language model analyses were solely my work.
Chapter 12 has not yet been published elsewhere. It was solely my work.

List of Abbreviations

BERT Bidirectional Encoder Representations from Transformers
BERTd German BERT model released by DBMDZ
BPE Byte-Pair Encoding
BPTT Back-Propagation Through Time
CCNN-LSTM Character-based Long-Short Term Memory
CDLM Custom Decay Language Model
ENF Embedding Not Found
FFD First Fixation Duration
FNN Feedforward Neural Network
FOFE Fixed-size Ordinally Forgetting Encoding
FPRT First Pass Reading Time
GPT Generative Pre-trained Transformer
GPU Graphics Processing Unit
KN Kneser-Ney
LBL Log-Bilinear
LDA Latent Dirichlet Allocation
LM Language Model
LSA Latent Semantic Analysis
LSRC Long-Short Range Context
LSTM Long-Short Term Memory, LSTMd for dropout version
LTCB Large Text Compression Benchmark
ME Maximum Entropy
mlm mixed linear model
nonpost Non-predictive context, post-nominal modification
nonpre Non-predictive context, pre-nominal modification
NoP Number of Parameters
OOV Out Of Vocabulary
POS Part Of Speech
PPL Perplexity
predpost Predictive context, post-nominal modification
predpre Predictive context, pre-nominal modification
PTB Penn Treebank
RNN Recurrent Neural Network
slm simple linear model, no mixed effects
SRNN Sequential Recurrent Neural Network
SVM Support Vector Machines
SWordSS Sub-Word Similarity-based Search
TFT Total Fixation Time
unk the unknown token
WD word-dependent
WI word-independent

Contents

List of Figures xiii

List of Tables xvii

I Characterizing knowledge in language models 1

1 Introduction: language models assign numbers to words 3
1.1 A brief history of language modeling, in three parts 4

1.1.1 n-grams and long distance dependencies 4
1.1.2 Neural network language models 6
1.1.3 Transformers . 7

1.2 Measures of human behavior . 9
1.3 Structure of the thesis . 10

2 Language models can mimic human burstiness 11
2.1 Introduction and Background . 11
2.2 Custom Decay Language Models . 12
2.3 Language modeling experiments . 14
2.4 Results and Discussion . 15

2.4.1 CDLM robustness analysis . 15
2.4.2 Perplexity results . 16

2.5 Conclusion . 17

x Contents

3 Language models can make specialized meaning representations of words 19
3.1 Introduction . 19
3.2 Neural network language models . 20

3.2.1 Feedforward neural networks . 20
3.2.2 Recurrent neural networks . 21

3.3 Sequential Recurrent Neural Network . 22
3.3.1 The SRNN neural architecture . 22
3.3.2 SRNN training . 24

3.4 Experimental setup . 24
3.4.1 PTB experiments . 25
3.4.2 LTCB experiments . 26

3.5 Word embedding evaluation . 26
3.6 Results . 27
3.7 Conclusion and outlook . 28

4 Language models can be optimized for cohesion 29
4.1 Introduction . 29
4.2 Short vs. long context language models . 30

4.2.1 Short range context . 30
4.2.2 Long range context . 31

4.3 Multi-span language models . 32
4.3.1 Long-Short Range Context network 33

4.4 Context range estimation . 34
4.5 Experiments and results . 35

4.5.1 Experimental setup . 35
4.5.2 PTB experiments . 36
4.5.3 LTCB experiments . 38

4.6 Conclusion and synthesizing discussion 39

5 Language models can use spelling to approximate the meanings of words 41
5.1 Introduction and background . 41
5.2 Inducing Rare Word Embeddings . 42
5.3 Correlations with human word similarity scores 46
5.4 Perplexity Experiments . 48
5.5 Long tail analysis . 52

5.5.1 What’s in the tail? . 52
5.5.2 When does SWordSS help? . 53

5.6 Conclusion . 54

xi

6 Some linguistic patterns that language models failed to capture 55
6.1 Introduction . 55
6.2 Related Work . 57
6.3 Data . 57
6.4 Feature Calibration . 58

6.4.1 Polar Intensity (INT) . 59
6.4.2 Sentiment Views (VIEW) . 60
6.4.3 Emotion Categories (NRC) . 60
6.4.4 Patterns (PAT) . 61
6.4.5 WordNet (WN) and Wiktionary (WK) 61
6.4.6 FrameNet (FN) . 62
6.4.7 Generic Features: Word Embeddings 62
6.4.8 Baselines to Feature-based Approach 62
6.4.9 Evaluation of Features on Base Lexicon 64

6.5 Expanding the Lexicon . 65
6.6 Cross-domain Classification . 66

6.6.1 Motivation and Set Up . 66
6.6.2 Results . 68
6.6.3 Explicitly vs. Implicitly Abusive Microposts 69

6.7 Conclusion . 70

II Relating language models and human behavior measures 71

7 An experiment on distinguishing human-written and LM-written text 73
7.1 Introduction . 73
7.2 Language Models . 75
7.3 Human Judgement . 77
7.4 Experiments and Results . 78

7.4.1 Uncertainty of Data . 79
7.4.2 Metric-based Performance . 80
7.4.3 Human Judgement Score . 81

7.5 Conclusion . 82

8 LMs capture varying amounts of word length and frequency information 83
8.1 Background . 84
8.2 Common methods . 86
8.3 Results and Discussion . 91

xii Contents

9 Perplexity is sometimes dissociated from fit to psychometric data 97
9.1 Background and common methods . 98

9.1.1 Measures based on eye-tracking fixation durations 98
9.1.2 Datasets . 101
9.1.3 Previous frameworks for evaluating language models 105
9.1.4 Survey of successful predictors . 107

9.2 Coefficients for linear mixed effects models 110
9.3 G-Maze response time >TFT >FPRT >FFD 112
9.4 Dedicated handling of part of speech does not reduce the dissociation . . . 114
9.5 Discussion and Conclusions . 116

10 Computational evidence for the divergence 117
10.1 A novel German G-Maze corpus . 118
10.2 Psychometric predictive power and perplexity 121

10.2.1 A custom language modeling corpus 122
10.2.2 Results for n-gram, RNN, and pre-trained Transformers 124
10.2.3 A BERT model trained from scratch 127

10.3 Discussion and Conclusions . 130

11 Linguistic evidence for the divergence 131
11.1 Background . 131

11.1.1 A review of syntactic tests for language model evaluation 132
11.1.2 Properties of the German G-Maze data 134

11.2 Methods . 136
11.3 Results . 137
11.4 Discussion and Conclusion . 146

12 Conclusion and outlook for language modeling research 147
12.1 Situating my contributions within CERBA 148
12.2 On the future of language modeling . 149

Bibliography 151

List of Figures

1.1 Variation of word triggering correlations for pronouns over large distances. 5

2.1 Variation of perplexity against the number of classes for a RNNLMwith 200
hidden nodes. 13

2.2 (Left) Perplexity versus number of classes (C) in CDLM. (Right) Sparseness
of CDLM’s transformed word space (Tlvwl

) measured at different threshold
(t) versus its context size. M represented the long-distance history size. . . 15

3.1 FNN versus RNN architecture. 21
3.2 Histograms of the projection-to-hidden weights V1, V2, V3, and V4 (see Fig-

ure 3.3) for each of the 4 word positions of an SRNN (n = 5) trained on
LTCB.These histograms show that themagnitude of theweights decayswith
the word position (from t−1 to t−4) but does not nullify. Thus, the model
successfully captured some good short-range dependencies. 22

3.3 Sequential Recurrent Neural Network architecture. The red arrows show
the error propagation during training (this figure does not include BPTT). . 24

4.1 Block diagram of a recurrent node in an LSTM network. 32
4.2 Block diagram of a recurrent node in an LSRC network. 34
4.3 Temporal correlation of LSRC states in comparison to LSTM and RNN. . . 35
4.4 Perplexity of neural LMs versus hidden layer size on PTB. 38

5.1 Variation of rare-word perplexity versus threshold on frequency of training-
set words on German, Tagalog, Turkish and Vietnamese corpora 51

5.2 Corpus and word similarity test set vocabularies broken down by number
of occurrences in the text8 corpus. 52

5.3 Spearman ρ × 100 on the Luong, Socher, and Manning (2013) similarity
task versus the minimum occurrences included during word2vec training. 53

xiv List of Figures

6.1 Illustration of word-similarity graph as used for weakly-supervised baseline
(WSUP); seeds for abusive words (e.g. bitch) are obtained by the output of
feature PAT (Section 6.4.4); seeds for non-abusive words (e.g. disagree) are
high-frequency negative polar expressions. 63

7.1 (Left)Human Judgement Score versusTop 1Percentage, AdjustedR2: 0.955.
(Right) Human Judgement Score versus Mean Rank, Adjusted R2: 0.934. . 81

7.2 Human Judgement Score versus Perplexity, Adjusted R2: 0.953. 82

8.1 Scatter plot of the average-surprisal to word-length Spearman correlations
versus perplexity for several language models. 91

8.2 Average-surprisal to word-length Spearman correlations for three classes of
language models as corpus size grows. 93

8.3 Average-surprisal to word-length Spearman correlations for three classes of
languagemodels as corpus size grows, limited to the top 1,000most frequent
words. 93

8.4 Spearman correlations between surprisal and type length for three families
ofGPT languagemodels as corpus size grows. Thedotted curves correspond
to the “small” size models and the solid curves correspond to the “large” size
models. 94

8.5 Percent of variance explained by each predictor for linear models of word
length trained on the WikiText-103 train set 10 million tokens (10M). . . . 95

8.6 Percent of variance in LM surprisals explained by each baseline predictor
for linear models trained on the WikiText-103 train set 10 million tokens
(10M). 95

9.1 Provo example texts. Blue – FFD, Orange – FPRT, Green – TFT. 101

9.2 PSC example texts. Blue – FFD, Orange – FPRT, Green – TFT. 102

9.3 Example trial structure of G-Maze task. Sentences are presented word by
word as a sequence of forced choices between two alternatives, only one of
which continues the sentence grammatically. 104

9.4 Coefficients for linear mixed effects models of TFTs in the Provo corpus
(upper) and the ZuCo corpus (lower). 110

9.5 Coefficients for linear mixed effects models of TFTs in the PSC corpus (up-
per) and the English G-Maze corpus (lower). 111

9.6 A comparison of the percent of variance that each predictor explains for
models of FFD (upper) and FPRT (lower). The language model appears in
brown and the random variation in the participants appears in grey. 112

xv

9.7 A comparison of the percent of variance that each predictor explains for
models of TFT (upper) and G-Maze response time (lower). The language
model appears in brown and the random variation in the participants ap-
pears in grey. 113

9.8 Scatterplots of psychometric predictive power versus perplexity. The right
panels correspond to linear mixed effects models that incorporate categori-
cal predictors and interactions for part of speech. The left panels correspond
to linear mixed effects models that do not. The top panels are for the Provo
corpus and the bottom panels are for the ZuCo corpus. 114

9.9 Scatterplots of psychometric predictive power versus perplexity. The right
panels correspond to linear mixed effects models that incorporate categori-
cal predictors and interactions for part of speech. The left panels correspond
to linear mixed effects models that do not. The top panels are for the PSC
corpus and the bottom panels are for the English G-Maze corpus. 115

10.1 Zipf curve for the dewiki corpus. 123
10.2 Coefficients for linearmixed effectsmodels of G-Maze response times in the

German G-Maze corpus. 125
10.3 A comparison of the percent of variance that each predictor explains for

models of G-Maze response time. The language model appears in brown
and the random variation in the participants appears in grey. 126

10.4 Scatterplots of psychometric predictive power versus perplexity. The right
panel corresponds to linear mixed effects models that incorporate categori-
cal predictors and interactions for part of speech. The left panel corresponds
to linear mixed effects models that do not. 127

10.5 Coefficients for linearmixed effectsmodels of G-Maze response times in the
German G-Maze corpus (ScratchBERT). 128

10.6 A scatterplot of psychometric predictive power versus perplexity. Each point
represents a checkpoint during training of ScratchBERT. The fitted curve
appears in red and the 95% confidence interval appears in dashed grey. . . . 129

11.1 Accuracy versus perplexity forTransformer languagemodels on theG-Maze
for language models task. The left panel gives the results for the English G-
Maze dataset and the right panel gives the results for the German G-Maze
dataset. The perplexity axis is on a log scale. 137

11.2 Scatter plot for the number of tests passed versus perplexity for the 16 ex-
amined language models. The perplexity axis is on a log scale. 140

11.3 Scatter plot for the number of tests passed versus perplexity for the check-
points of the BERT model that I trained from scratch. The perplexity axis is
on a log scale. 141

xvi List of Figures

11.4 Plots of actual average G-Maze response times by region. The top panel is
the centered and scaled response times, the middle panel is the predicted
values from the baseline linear mixed effects model, and the bottom panel
is the residuals from the baseline linear mixed effects model. 142

11.5 Plots of adjusted, by-region, predictedG-Maze response times for theGPT2-
SM models. 143

11.6 Plots of adjusted, by-region, predicted G-Maze response times for the pre-
trained BERT models. 144

11.7 Plots of adjusted, by-region, predicted G-Maze response times for the BERT
models trained from scratch. 145

12.1 The “parent” fields of data science. 147

List of Tables

2.1 Test set perplexity (PPL) and total number of parameters (PAR) for each LM. 16

3.1 Corpus size in number of tokens and OOV rate. 25
3.2 Examples of top 5 similar words. 26
3.3 Language model performance (PPL) on the PTB test set. 27
3.4 Language model performance (PPL) on the LTCB test set. 28

4.1 Corpus size in number of tokens. 35
4.2 Comparison of LSRC and other model perplexities (PPL) on the PTB test set. 37
4.3 Comparison of LSRC and other model perplexities (PPL) on the LTCB test

set. 39

5.1 Some statistics on corpora in several languages used for language modeling. 42
5.2 Some statistics on word similarity datasets used in the experiments. 43
5.3 Spearman ρ × 100 with human ratings on a German word similarity task

(Gur65) for SWordSS embeddings using various string similarity functions. 46
5.4 Spearman ρ×100 evaluation of techniques with andwithoutmorphological

features used to generate representations for the word similarity task. 47
5.5 Statistical summary of corpora used for the language modeling experiments. 49
5.6 Perplexities on test set (PPL), RW1perplexities (RW1PPL) in thousands and

number of parameters (NoP) for LBL and LSTMLMs inmillions, presented
on four corpora. 50

6.1 The base lexicon: 1650 entries in total of which 551 are abusive. 58
6.2 Information about unlabeled corpora used. 58
6.3 Percentage of abusive / not abusive instances among (binary) intensity and

views. All numbers only refer to the subset of the base lexicon (Table 6.1)
taken from the Subjectivity Lexicon (i.e. 1500 entries). 59

xviii List of Tables

6.4 1-star reviews in different corpora. 60
6.5 Comparison of the 10 most frequent pattern matches (numbers in brackets

indicate frequency). 61
6.6 Datasets comprising labeled microposts. 64
6.7 Different classifiers on base lexicon (Table 6.1). Statistical significance test-

ing (paired t-test at p < 0.05): ∗: better than two lines above; †: better than
previous line. 65

6.8 Performance of the different linguistic features on base lexicon (Table 6.1).
Statistical significance testing (paired t-test at p < 0.05): ∗: better than two
lines above; †: better than previous line. 66

6.9 Lexica used in cross-domain classification of microposts (figures denote the
number of unigrams). 66

6.10 In-domain classification of microposts (metric: F1-score). 68
6.11 Different classifiers on cross-domain classification ofmicroposts; best result

in bold (metric: F1-score). 69
6.12 Cross-domain classification of microposts: all test data vs. explicit subset

(metric: F1-score). 70

7.1 Example of generated sentences. 77
7.2 Performance of language models in LM Turing Test 80

8.1 Comparison of several average-surprisal to word-length Spearman correla-
tions against the 100M freq to word-length Spearman correlation. 92

9.1 These explanations are quoted from Demberg and Keller (2008). 100
9.2 Hypothesis testing on whether language models explain significantly more

variance in one measure than another. 113
9.3 These values give the positive difference between the “best” linear mixed

effectsmodel and the “worst” for different families of GPTmodels analyzing
different corpora. The POS column corresponds to models that incorporate
categorical predictors and interactions for part of speech. 115

10.1 Example stimulus item in four conditions with approximate English transla-
tions. The object nouns are bolded and themodifier phrases are underlined.

. 119
10.2 Four special characters inGerman and their replacements in the dewiki cor-

pus. 122

11.1 Left half of the results from the novel test suite built for the GermanG-Maze
corpus. The symbols in the table correspond to significance levels. X : wrong
direction, . : p < 0.1, * : p < 0.05, ** : p < 0.01, *** : p < 0.001. 138

xix

11.2 Right half of the results from the novel test suite built for the German G-
Maze corpus. The symbols in the table correspond to significance levels. X
: wrong direction, . : p < 0.1, * : p < 0.05, ** : p < 0.01, *** : p < 0.001. . . 139

xx List of Tables

Part I

Characterizing knowledge in language
models

Chapter 1

Introduction: language models assign
numbers to words

OnNovember 30, 2022, OpenAI released a chatbot called ChatGPT, and themedia response
in the months that followed seemed to harken a revolution in artificial intelligence. Teachers
worried they would not be able to assign essays for homework anymore because ChatGPT
could write them. Workers whose work involves substantial writing reached a new level of
worry about the security of their jobs. Geoffrey Hinton, the “Godfather of AI”, said in a
televised interview1, “I think in five years’ time [ChatGPT] may well be able to reason better
than us.”
But a contingent of the academic community, myself included, reacted not with shock, but
confusion. The technology behind ChatGPT was not new. In some form, it has been driv-
ing automatic speech recognition (Katz, 1987), machine translation (Brown et al., 1990), dia-
logue systems, autocomplete, information retrieval, question answering, and other language
technologies for decades. The first chatbot, ELIZA, was developed in the 1960s. And the
specific model architecture underlying ChatGPT, the Generative Pre-trained Transformer
(GPT) made its debut four years prior (Radford et al., 2018). In short, the world took no-
tice because an online tool made a reasonably state-of-the-art language model intuitively
accessible, not because the language model itself was singularly revolutionary.
Despite their current fame and power, a language model to me is still a program that takes
some text as input and outputs numbers, maybe a number for each word but at least one
number for the whole text. These numbers represent the probability of the current word, or
sentence, or paragraph, etc., given its context. The context is usually some representation
of the words that came before. Perhaps cyclically, the numbers that come out of a language
model are both its product and its evaluation. If the language model receives a suitable
amount of real text, that text “occurred”, so it should have as high a probability as possible.

1https://www.cbsnews.com/news/geoffrey-hinton-ai-dangers-60-minutes-transcript/

https://www.cbsnews.com/news/geoffrey-hinton-ai-dangers-60-minutes-transcript/

4 1. Introduction: language models assign numbers to words

It is useful to imagine probability in this case as a limited resource, so an increase in the
probability of one text would require a corresponding decrease in the probability of another
text that may or may not occur in the future.
Research in language modeling essentially comes down to how to represent that context. In
theory, a language model could use any kind of information to refine its predictions about
the next word. It is also easy to imagine that humans would practically be able to use this
information, too, but they would not be able to use all the kinds of information that could
conceivably be encoded in a languagemodel. For example, if there were some statistical pat-
tern that only arises after ten lifetimes’ worth of exposure to a language, a human would not
be able to use that in producing or comprehending language. Assuming that such patterns
exist and assuming language models would be able to capture and use them appropriately,
the prevailing way of evaluating language models would incentivize them to become less
human-like2 as their predictions become more accurate.
I call this the language model divergence. In this thesis, I claim that state-of-the-art language
models have begun using information that humans cannot and do not use to refine their
predictions, and so the language model divergence has occurred. I show some kinds of in-
formation that languagemodels are good at learning and some kinds that humansmust have
access to, but language models did not seem to capture. Then, by operationalizing human-
ness as the ability to explain measurements of human behavior, I put forward evidence that
the language model divergence has occurred and advocate for transitioning towards using
measurements of human behavior to evaluate language models in the future.

1.1 A brief history of language modeling, in three parts

I assert that twomonumental advances triggered three distinct eras in the history of language
modeling. The first, the introduction of neural networks for language modeling, brought
language models out of somewhat niche use and into widespread deployment. The second
advance, the Transformer language model, in several variants, triggered the availability of
language models that could generate somewhat convincingly human-like text.

1.1.1 n-grams and long distance dependencies

The first language models represented context in arguably the simplest way possible: enu-
meration. That is, they counted all of the observed continuations of a context and set the
probabilities accordingly. But, the number of contexts to track grows exponentially with the
context size, so these models commonly used a Markov assumption: cut off the context so
it only contains the n − 1 most recent words. Thus, the model only considers those plus
the current word, n words in all, at one time. This is called an n-gram language model. Of

2“Less human-like”, in the current sense, means using a larger proportion of information that humans
cannot or do not use.

1.1. A brief history of language modeling, in three parts 5

course, contexts of size n−1 could still bemissing from the training data, whichmotivated a
plenitude of smoothing methods to prevent unexpected probabilities of zero. For example,
Kneser-Ney smoothing (Kneser and Ney, 1995), which considers the diversity of contexts
for a word, became a standard.
n-grams were difficult to outperform for a very long time (Rosenfeld, 2000), as they are
mathematically optimal aside from the influence of distant context. My coauthors and I, in
Singh, Greenberg, and Klakow (2016), investigated how long a word in the context main-
tains influence over the future as more and more other words intervene. Put another way, as
long as a word remains influential, statistical properties of the future, such as probabilities
of words, are dependent upon it. This motivates the present use of the term “long-distance
dependency”, but note that this is not exactly the same kind of long-distance dependency
in language commonly studied in linguistics. For those, context influences the grammati-
cality or acceptability of a future word rather than its probability. For example, the subject
of a sentence, regardless of however many words intervene or the grammatical number of
intervening nouns, determines the grammatical number of the verb.
To quantify information in dependencies of long distances, my coauthors and I used a vari-
ant of pointwise mutual information. Specifically, for a given pair of words (w1, w2) sepa-
rated over a distance d, this examines the ratio of the actual co-occurrence rate to the sta-
tistically predicted co-occurrence rate: cd(w1, w2) = Prd(w1,w2)

Pr(w1) Pr(w2)
. A value greater than 1

shows it is more likely that the word w2 follows w1 at a distance d than otherwise expected
according to the unigram frequencies of the two words. My coauthors generated Figure 1.1,
an example variation of this correlation for pronouns with the distance d on the English
Gigaword corpus (Graff and Cieri, 2003).

Figure 1.1: Variation of word triggering correlations for pronouns over large distances.

As I wrote in the publication, seeing another “she” about twenty words after seeing a first
“she” is more than 13 times more likely than seeing a “she” in general. A similar, but inter-
estingly weaker, observation can be made for the word “he”. Note also that “she” somewhat
suppresses “he” and vice versa, and these cross-correlations, although negative, are still in-
formative for a prediction system. In summary, Figure 1.1 demonstrates that plenty of word

6 1. Introduction: language models assign numbers to words

triggering information is spread out over long-distance dependencies that is typically be-
yond the reach of n-gram language models.

1.1.2 Neural network language models

As neural networks for language modeling are able to capture much more of the triggering
information described in Section 1.1.1, they produced substantially better predictions. This
was mainly because they encode words as vectors in a continuous space. Vector addition
does not increase the dimensionality of the vectors, so representing words as vectors means
that any number of them can be combined without increasing the number of parameters in
themodel. Bengio et al. (2003) proposed a FeedforwardNeuralNetwork (FNN) for language
modeling, as a variant of n-gram language models. This FNN encoded the words in the
entire n-gram (context and current word) as vectors, combined them, and then computed
the probability from the combined vector. This approach was very successful and has been
shown to outperformamixture of different othermodels (Goodman, 2001a), and to improve
speech recognition performance significantly (Schwenk and Gauvain, 2005).
To “overcome” this constraint in which onlynwords are considered at a time, since as shown
in Section 1.1.1, triggering can persist beyond 1000 words, Mikolov et al. (2010, 2011c) pro-
posed and implemented a toolkit for a Recurrent Neural Network (RNN) language model.
In such a model, there are two inputs at every time step: the current word and the context
vector from the previous time step. In theory, this allows information about the context to
cycle in the network indefinitely. However, in practice, my coauthors and I found that in-
formation rarely persists in such a network for more than eight words (Oualil et al., 2016b).
Sundermeyer, Schlüter, and Ney (2012) originally pitched their improvement to the RNN,
called a Long-Short Term Memory (LSTM) network, as a way to address the RNN-specific
issues of vanishing and exploding gradients. To train a model that feeds the context vec-
tor back into the network as an input, it is common practice to propagate errors backward
through those recurrent connections. Essentially, the training process “unrolls” the net-
work. By unrolling this way, there is a substantial chance that the gradient becomes too
large to be usable as it would dominate the previous values for the parameters that are being
iteratively updated (exploding gradient), or that it becomes 0, meaning that it does not pro-
vide a direction to update the parameters and improve the model (vanishing gradient). As
the field of language modeling adopted LSTMs, with their separate input, output, and forget
gates, this architecture was hailed as especially appropriate because these gates can explicitly
control the longevity of context information in the network.
RNNs, and even more so for LSTMs, require orders of magnitude more parameters and
training iterations before their predictions are suitably accurate. It is especially problematic
that the number of parameters grows super-linearly with the size of the vocabulary (the list
of possible words available to occur at each position in the utterance). Also, utilizing classes
to speed up training for RNNs leads to some instability in language model quality. There-
fore, my coauthors and I in Singh, Greenberg, and Klakow (2016) proposed, implemented,

1.1. A brief history of language modeling, in three parts 7

and evaluated the Custom Decay Language Model (CDLM), a non-recurrent architecture
designed to have the minimal power (number of parameters) necessary to capture trigger-
ing relationships of the kind discussed in Section 1.1.1.
To combine the benefits of FFNs and RNNs, my coauthors and I in Oualil et al. (2016a)
proposed, implemented, and evaluated the Sequential Recurrent Neural Network (SRNN)
language model. Specifically, this architecture took n + 1 inputs at each time step: the
current word represented as a continuous vector, the preceding n− 1 words represented in-
dividually as continuous vectors, and a single recurrent vector meant to capture the context
before those n− 1 words. The network contained lateral connections that allowed the word
representations to specialize in a particularly linguistically-motivated way.
As a different approach that took advantage of the still somewhat recent advent of the LSTM,
my coauthors and I in Oualil et al. (2016b) modified the internal structure of an LSTM node
to include one additional recurrence, making the Long-Short Range Context (LSRC) Lan-
guage Model. This allowed two, rather than one, vector representations of the context: the
short context vector and the long context vector. Although this model had the linguistically
desirable quality that its long context vector changes over time much more gradually, allow-
ing some information to persist throughout an utterance of arbitrary length, the prediction
accuracy of LSRC ended up being roughly comparable to an LSTM with dropout. Dropout
is an incredibly successful strategy for machine learning in which nodes are temporarily
removed from the network according to a probabilistic function, encouraging redundancy
among the different nodes. There is a plausible analogy between dropout and the refractory
period after a (bio) neuron has fired.

1.1.3 Transformers

Somewhat related to the SRNN, the Transformer (Vaswani et al., 2017) includes individual
context vectors for the “recent” context, although the notion of “recent” expanded to about
512 words given advances with machine learning on graphics processing units (GPUs). A
Transformer has components of two kinds, encoder and decoder, although a single system
might contain multiple encoders or decoders. The encoder creates these individual context
vectors for the various positions in the 512most recent words. Then, it combines them using
weighted addition. There are a number of ways to set the weights, but the most complicated,
successful, and commonly used is an LSTM mechanism called self-attention. The values
in the context vectors determine the weights. As such, the encoder considers the words
themselves when “deciding” what parts of the context to “attend” to, and weights the context
words accordingly.
A decoder component begins with the already combined context vector and, using self-
attention over the components of that context vector, generates probabilities for the next
words. If the decoder is being used to generate language, the selected word at each time step
becomes an input for the next. This is called auto-regression. Note then that the input begins
as a sequence, leaves the encoder as a single representation, and then leaves the decoder as

8 1. Introduction: language models assign numbers to words

a sequence. As such, a Transformer is a sequence-to-sequence model.
Next, theBidirectional EncoderRepresentations fromTransformers (BERT) languagemodel
(Devlin et al., 2018) commonly contains several encoder components (layers). The unique
idea for this architecture was to input an entire text, perhaps a few sentences, into the model
at one time, and then use the words both before and after the current word to refine the
model’s predictions. More specifically, the self-attention part can pass back and forth (bidi-
rectional) over the text to set the weights for the combined context vector. So, such a model
is only trained to see complete texts and predict a temporarilymasked word at each position.
As a final architecture, theGenerative Pre-trainedTransformer (GPT) languagemodel (Rad-
ford et al., 2019) commonly contains several decoder components. While GPT has possibly
bi-directional self-attention over the final representation of context, it contrasts with BERT
in that the information remains strictly sequential (auto-regressive). Therefore, this model
does something much simpler to create a context vector, similar to an RNN, but it does
more computation than BERT on that context vector to generate predictions. BERT and
GPT form a contrasting pair of Transformers to evaluate. While BERT has access to the
future and lacks auto-regression, GPT lacks access to the future and has auto-regression.
In summary, language modeling research in the recent years yielded several appealing neu-
ral network architectures, many of which requiring outrageous amounts of data, processing
power, and time to train and use from scratch. Further, a language technology application,
especially in industry, is not exactly incentivized to go through the trouble of changing its
language model architecture unless that change could have a substantial benefit to the users.
Therefore, it really matters how academia evaluates language models because engineers use
those evaluations to make decisions. Ideally, an appropriate authority could set up a test,
large and comprehensive enough to enable statistical inference and specific to the language
technology application, which holds all other variables constant and evaluates the perfor-
mance ofmultiple architectures on the downstream application itself. For a litany of reasons,
including finding the proper venue for such results, having resources to conduct the test, and
considering that the other variables do not stay constant, this is not feasible.
So, the field persists with intrinsic evaluation. Language models associate a conditional
probability with each word and these probabilities are, by definition, real numbers between
0 and 1. Multiplying many numbers in that interval could have underflow issues. So this,
as well as naturalness of the term in psycholinguistics literature, motivates a switch from
probability to surprisal (Hale, 2001), the negative logarithm of the probability value. With
surprisals, the minimum value is 0, corresponding to a probability of 1 (certain, or com-
pletely not surprising), and there is no upper bound as the probability approaches 0 (nearly
impossible, or very surprising). Then, all of the individual surprisals can be summed to get
a joint surprisal. The arithmetic mean of the surprisals is called the average surprisal or cross
entropy. And, the exponentiation of the cross entropy, which undoes the logarithm that
transformed probability into surprisal, is called perplexity. Since the minimum surprisal is
0, the minimum average surprisal is 0, and the correspondingminimum perplexity is 1. Just
as with surprisal, perplexity has no upper bound. If multiple languagemodels each compute

1.2. Measures of human behavior 9

the average surprisal for a large test corpus, these average surprisals, and therefore, perplex-
ities, correspond inversely with how accurate the predictions were for each language model.
That is, if the language model predicted a word well, it assigned a low surprisal to it. This
leads to the intuitive interpretation of perplexity: the average number of equally probable
words among which the language model is choosing at each position in the utterance.
This, combined with the fact that perplexity correlates incredibly precisely with word error
rate for automatic speech recognition (Klakow and Peters, 2002), means that most language
model evaluation stops at perplexity. But, as discussed before, perplexity evaluation only
rewards themost probable text. After a languagemodel divergence, themost probable text is
not the best text. So, what can be used to evaluate languagemodels in the place of perplexity?

1.2 Measures of human behavior

My position is that perplexity evaluation should be succeeded by correlation with some hu-
man behavior measurement. The first, perhaps obvious, choice is to ask humans for intro-
spective judgements / ratings of humanness on a Likert (1932) scale. But this has two po-
tentially severe shortcomings. First, there needs to be something to rate, ideally something
that does not require specialized knowledge to evaluate. Sampling from a language model
meets this ideal, but perhaps does not capture the essence of a language model’s predictions.
The second potential shortcoming is that introspection is highly unnatural. Humans do not
often interact consciously with their knowledge of language. So, a more faithful application
of language knowledge is having humans complete a task that requires language knowledge,
measuring some associated behavior, and then evaluating humanness indirectly based on
the relationship between the language model predictions and the human behavior. Since
language models make predictions about upcoming words, experimenters can ask humans
to do the same explicitly. When completed by humans, this is called a Cloze task (Taylor,
1953). Specifically, the part that can be measured is which words humans suggest as good
continuations of a text segment. Note that context can be very constraining, as in “Before
mailing the letter, I affixed a postage ”, or not very constraining, as in “They ”.
Since language models cannot “break” when they encounter something unpredictable, they
must make less extreme predictions than those suggested by the distributions of Cloze re-
sponses. Smith and Levy (2011) confirmed a dissociation between Cloze responses and
language model predictions, as well as between Cloze responses and human reading times.
In contrast to introspection and Cloze, perhaps the best way for measurements to capture
human knowledge of language is via online comprehension tasks, which require humans to
interact with language in real time. The most pronounced behaviors of this sort occur when
the linguistic stimuli are aberrant, whether that arises from phonology / morphology, syn-
tax, semantics, pragmatics, or some combination thereof. Brainwaves (electroencephalog-
raphy) are especially promising as a way to measure human responses to aberrant stimuli.
In particular, the N400 is traditionally associated with semantic violations (Kutas and Hill-

10 1. Introduction: language models assign numbers to words

yard, 1980) and the P600 is traditionally associated with syntactic violations (Osterhout and
Holcomb, 1992). But then again, these measures focus on detecting when something goes
wrong. They do not say much about the case in which processing proceeds normally.
There are a number of measures of “normal” language processing during reading. Witzel,
Witzel, and Forster (2012) compared three main ways to measure reading times. First, eye-
tracking measurements involve where, when, and for how long the eyes fixate on text. This
gives a window to what words the human is currently processing and how difficult it is
to recognize and integrate the new information with the existing information. Second, in
self-paced reading (Just, Carpenter, and Woolley, 1982), humans proceed word-by-word
through a text by pressing a button. Third, in a Maze (Forster, Guerrera, and Elliot, 2009),
humans navigate a series of binary forced choices. At each choice in an L-Maze, one word
is a valid continuation of the sentence and the other is not a valid word. In a G-Maze, one
word is a valid continuation of the sentence and the other is a valid word that cannot con-
tinue the sentence grammatically. Finally, the grandly named Index of Cognitive Activity is
the “number of times per second that an abrupt discontinuity in the pupil signal is detected.”
It is believed to be related to cognitive effort, as opposed to time (Marshall, 2002).

1.3 Structure of the thesis

This thesis on the language model divergence has two parts. First, it was essential to com-
plete some work in novel architectures and look for connections to humanness on that level.
So, in Part I, I present three novel architectures that I already introduced in Section 1.1.2.
They are the Custom Decay Language Model (Chapter 2), the Sequential Recurrent Neural
Network Language Model (Chapter 3), and the Long-Short Recurrent Context Language
Model (Chapter 4). Then, I do one analysis of language model “knowledge” at the morpho-
logical level (Chapter 5) and one at the sentiment level (Chapter 6).
Then, in Part II, I use various measures of human behavior to evaluate language models.
Chapter 7 presents a study on direct introspection into the humanness of language mod-
els. Chapter 8 gives the basic framework for how I obtain data from a language model so
that this data can be evaluated against human behavior. Once in place, I explore the surface
relationship between surprisal, word frequency, and word length, to ensure the results of
my humanness studies are not confounded. Then, in Chapter 9, I evaluate language mod-
els against English eye-tracking data, English G-Maze data, and German eye-tracking data.
Since languagemodels explainedmore variance in the G-Maze data than in the eye-tracking
data, I report a new dataset of G-Maze response times that my colleagues created and per-
form a computational analysis of it that shows definitive evidence for the language model
divergence (Chapter 10). Through a battery of tests for systematic differences designed into
the new G-Maze data, I show linguistic evidence for the divergence as well (Chapter 11).
Finally, I conclude in Chapter 12 by conjecturing that the divergence will continue to widen,
and I offer an outlook for the future of language modeling.

Chapter 2

Language models can mimic human
burstiness

As introduced in Chapter 1 and Singh, Greenberg, and Klakow (2016), there are triggering
effects in corpora spanning at least 1000 words. It is perhaps striking that auto-triggering
curves, in which a word becomes more likely to occur again after a first occurrence, and
cross-triggering curves, in which a word becomes more likely to occur after a different word
occurs, vary widely among words and word pairs. The strength of these curves and com-
mon linguistic knowledge have led to the rise of the term “bursty” as applied toward human
language. The idea is that if a topic appears once, perhaps “language models” as an example
for this thesis, the topic appears many more times, i.e. it “bursts”.
Upon inspecting the triggering curves, I contributed the idea tomake a languagemodel that
couldminimally learn decay profiles (triggering curves) that are custom to eachword. This is
how I coined the name for the novel language model architecture presented in this chapter:
the Custom Decay Language Model (CDLM).

2.1 Introduction and Background

Before CDLMs, scientists proposed that several models, such as the cache-based LM (Kuhn
and De Mori, 1990), skip models (Guthrie et al., 2006; Momtazi, Faubel, and Klakow, 2010),
and recurrent neural network language models (RNNLMs) (Mikolov et al., 2011c) capture
triggering over large contexts. But, from checking a few examples for language generated by
these languagemodels, my coauthors and I could see that languagemodels seldom captured
cross-triggering. Also, just to capture auto-triggering adequately, they often required a pro-
hibitively large number of parameters as the vocabulary size scales. CDLMswere specifically
built to capture long range dependencies while growth in number of parameters remained
sub-linear in vocabulary size. They outperformed large-context-size skip models, whose

12 2. Language models can mimic human burstiness

parameters were not constrained this way. Additionally, CDLMs showed a more robust
variation of performance metric against the variation of meta-parameters than RNNLMs.
My coauthors conducted a study of the sparseness of word representations over different
context sizes, and I helped to interpret the results.

Skipmodels Skipmodels enumerate dependencies liken-grams, but allowwildcards (skips)
at specific positions. This technique in combinationwith distance-specific smoothingmeth-
ods spans larger context sizes and reduces the sparseness problem. However, the number of
parameters still grow by O(V 2) (where V is the vocabulary size) as the context size grows,
making them computationally inefficient. In theory, the skip sizes could be binned or quan-
tized, but this would still require themodel architect to set arbitrary boundaries. TheCDLM
architecture occupied, in its time, a nice position with respect to all of these issues. My coau-
thors and I gave it theminimal number of parameters that it needed to capture the triggering
and it still had representational powermore along the lines of a neural network than the skip
models that preceded it.
For the experiments, my coauthors built skip models by combining unified-smoothing 3-
grams and distance 2-grams, which extended the range. Previously, such a combination
had been shown to outperform state-of-the-art smoothed n-gram LMs Singh and Klakow
(2013).

RNNLMs RNNLMsprovided impressive performance gainswhen compared to other con-
temporary language models. Through recurrence, the context size for these models is es-
sentially infinite, or at least, formally unconstrained. This makes them especially suitable
for long range dependencies. However, training RNNLMs can be slow, especially because
the output must be normalized for each word in the vocabulary. Hierarchical softmax and
related procedures that involve decomposing the output layer into classes can help with this
normalization Goodman (2001b). Unfortunately, using classes for normalization compli-
cates the training process, since it creates a particularly volatile metaparameter. This can be
observed in Figure 2.1, where even for small variation in classes, RNNLMs show unstable
variation in perplexity.
I trained many RNNLMs in this time using a popular implementation by Mikolov et al.
(2011c). This implementation builds networks that require H2 + 2HV +HC parameters,
where H is the number of hidden units and C is the number of normalization classes. An
increase by one in the hidden layer size increases the number of parameters linearly in vo-
cabulary size (O(V +H + C)).

2.2 Custom Decay Language Models

To build CDLMs, my coauthor Mittul Singh was inspired by log-linear language models,
which have sub-linear growth in the number of parameters with context size (Klakow, 1998).

2.2. Custom Decay Language Models 13

Figure 2.1: Variation of perplexity against the number of classes for a RNNLM with 200
hidden nodes.

The model architecture consisted of two parts: a log-linear model and an n-gram model.
For a history of size M , the n-gram part looks at the first N − 1 (N < M) predeces-
sor words and the log-linear part captures the triggering information stored in distances
d in the range [N,M). Given the string of words {wi−M+2, · · · , wi−1, wi, wi+1} where
h = {wi−M+2, · · · , wi}, and supposing that N = 3, CDLM can be defined as :

P (wi+1|hi) =
1

Z(hi)
× P3-gram(wi+1|wi−1, wi)

× exp(Ewi+1vwi−2
+

i−3∑
k=i−N+2

Ewi+1Tkvwk
) (2.1)

where i is the position in the document, P3-gram is a standard 3-gram LM and vwk
is the

vector representation of the word at a distance k from the word to be predicted in a C-
dimensional, continuous, dense latent space (C < V). Here, the dimensions of C can be
understood as “classes” capturing latent semantic information in the data.
Ewi refers to a column of the emission matrix E, which weighs the word vectors vwk

to
predict the next word. Such a matrix can be thought of as an interpretation function for
the current latent state of the model. These latent states exist in the same space as the word
vectors. Presumably, some words are closer to this state than others. In this way, the latent
states represent semantic concepts that the E matrix can translate into words.
The model also includes a distance specific transition matrix Tk to take word vectors from
one distance-based latent space to another. More directly, the Tk matrices control the decay
of each word within the latent state. Since the Tk are matrices, as opposed to scalars, which
would provide a uniformdecay, and as opposed to vectorswhichwould provide a class-based
decay, the shape of the decay function is custom to each word, which is why this model is
named the Custom Decay Language Model.
This setup allows the model to constrain the number of parameters, as each time a word is
added to the latent state, only the Tk matrix needs to be updated. Apart from the O(V 3)

14 2. Language models can mimic human burstiness

parameters required to construct the trigram, it needs O(V C) parameters to train the E

matrix and theword vectors vwk
, and it needsO(C2) parameters for training theTk matrices.

In all, CDLM parameters increase sub-linearly with V .
As shown in the last line of Equation 2.1, the model log-linearly combines Tkvwk

at each
context position to form a long-distance predictor of the next word. This approach, though
inspired by skip models, is more customizable as it allows the exponent parameters to in-
clude matrix based formulations and not be constrained only to single values like skip mod-
els. Though the exponential element captures the latent / topical information well, the ef-
fects are too subtle to capture many simple short-distance dependencies (sparse sequential
details). In order to make the model richer in sparse sequential details, my coauthors log-
linearly combined the long-distance component with an n-gram LM. In order to estimate
the parametersE, vwk

and Tk, my coauthors used the stochastic gradient descent algorithm
and minimize the training perplexity of CDLM.

2.3 Language modeling experiments

Corpus My coauthors trained and evaluated the language models on the Penn Treebank
as preprocessed by Charniak (2001) using the traditional divisions of the corpus: sections
0-20 for training (925K tokens), sections 21-22 for validation (73K tokens), and sections
23-24 for testing (82K tokens). Despite its final vocabulary of 9,997 words and overall small
size, this particular version of the Penn Treebank was a standard for evaluating perplexities
of novel language models Mikolov et al. (2010); Cheng et al. (2014). The small size makes
training and testing faster, but also makes demonstrating differences in performance more
difficult. Presently, this corpus is not used as much for language model evaluation because
there is an expected ceiling: the perplexity may not fall much more than it already has.

Experimental Setup My coauthors constructed perplexity experiments as a way to gauge
the amount of “knowledge” the CDLMs acquired during training.
In order to establish themost competitive baselines, the RNNLMs trained in the experiment
were optimized for number of classes. Recall that these classes just aid the normalization
process, as opposed to CDLMclasses, which form a very integral part of themodel. If classes
were overhauled from the RNNLM altogether, training would take much longer, but the
perplexity results would be slightly lower. My coauthors found that 15 classes optimized
perplexity values for RNNLMs with 50 and 145 hidden nodes, and 18 classes optimized
perplexity values for RNNLMs with 500 nodes. These models were trained using the freely
available RNNLM toolkit, version 0.4b, with the -rand-seed 1 and -bptt 3 arguments.
The n-gram models used were trained with SRILM (Stolcke, 2002). They were a unified
smoothing 3-gram (UniSt) and an interpolated modified Kneser-Ney 5-gram (KN). The
KN model was trained with the following arguments: -order 5 -gt2min 1 -gt4min 1
-gt3min 1 -kndiscount -interpolate.

2.4. Results and Discussion 15

CDLM uses the unified-smoothing 3-gram as the short-distance dependency component
of its model and the long-distance (exponential) element of the model considers up to five
words after the trigram.
The learning rate (η) adaptation scheme was managed by the adaptive gradient methods
Duchi, Hazan, and Singer (2011). After optimizing on the development set, η was fixed to
0.1 and the dimensionality of the latent space C was fixed at 45.
While building CDLMs, my coauthors first trained a CDLM M = 4 and reused its con-
stituent parameters E and v to build CDLM M = 5, only updating Tk while training. This
process iterated up to M = 8.

2.4 Results and Discussion

2.4.1 CDLM robustness analysis

Figure 2.2: (Left) Perplexity versus number of classes (C) in CDLM. (Right) Sparseness of
CDLM’s transformedword space (Tlvwl

)measured at different threshold (t) ver-
sus its context size. M represented the long-distance history size.

CDLMs showed robust variation of perplexity with changes in classes, as shown in Fig-
ure 2.2. The perplexity values decreased monotonically with increasing classes, as expected
since each increase in class created more parameters that can be tuned. Note that moving
fromM = 4 toM = 5 doubled the number of Tk matrices, which caused the large perplex-
ity drop.
Along with the robustness shown by CDLMs, the log-linear formulation of CDLMs allowed
a follow-up study on the sparseness of the transformed word space matrices represented
by Tkvwk

for different distances. My coauthors measured sparseness by counting the ma-
trix entries below a given threshold. By this measure, a more sparse matrix will have large
number of entries below the threshold than a less sparse matrix. My coauthors plotted the
variation of the sparseness for Tkvwk

matrices for different thresholds against the context
size of CDLM in Figure 2.2. In most cases, my coauthors and I observed that as the context

16 2. Language models can mimic human burstiness

size increased, the transition matrices had fewer entries below the threshold, making them
less sparse. Therefore, my coauthors and I claimed that this matrix formulation alleviated
the sparseness problem and also allowed the exponent part to capture latent information.

LM Range Hidden PPL NoP
UniSt 3 - 162.1 2.0M

4 160.0
5 155.8

Skip 6 - 154.4 4.1M
7 153.6
8 153.2

KN 5 - 141.8 3.2M

50 156.5 1.0M
RNNLM ∞ 145 139.3 2.9M

500 136.6 10.3M
4 141.1
5 139.5

CDLM 6 45 139.2 2.9M
7 139.1
8 139.2

5 + 4 137.2
5 + 5 135.7

KN+CDLM 5 + 6 45 135.2 6.1M
5 + 7 134.9
5 + 8 134.9

KN+RNNLM 5 +∞ 50 120.3 4.2M
CDLM+RNNLM 7 +∞ 45 + 50 120.2 3.9M

Table 2.1: Test set perplexity (PPL) and total number of parameters (PAR) for each LM.

2.4.2 Perplexity results

Table 2.1 presents a comparison of CDLM with different language models on the basis of
their total numbers of parameters and their perplexities. As shown, skip models (skip) out-
performed the unified smoothing 3-gram (UniSt3) as they had more parameters and hence,
encoded more information over large distances.
CDLM outperformed UniSt3 because of spanning larger context size and greater number of
parameters at its disposal. CDLM45 also outperformed the Skip models. In fact, increasing

2.5. Conclusion 17

the context size of Skip to eight words obtained a perplexity of 153.2, which was still less
than the CDLM perplexity of 141.1 for a context size of four words. Also, Skip required 4.1
million parameters which was more than a third greater than those required to build the
seven-word CDLM. Also, CDLM was able to perform better than KN with fewer number
of parameters. When combining CDLM with KN, increasing the context size for CDLM
obtained progressively-better performance than KN.
The experiments further compared CDLMs with RNNLMs. An RNNLM with 145 hidden
nodes had about the same number of parameters as CDLM and performed 0.1 perplexity
points worse than CDLM. Increasing the hidden units for RNNLM to 500 led to the best
performing RNNLM. This came at a cost of using a lot of parameters. To produce better
performing language models with fewer parameters, my coauthors constructed an RNNLM
with 50 hidden units, which when linearly combined with CDLM (CDLM+RNNLM) out-
performed the best RNNLM using less than half as many parameters. It even nominally
outperformed the combination of KN and RNNLM using fewer parameters, but this differ-
ence was likely not significant. Combinations of the three different LMs did not result in
any large improvements, suggesting that there was redundancy in the information spread
over these three types of language models.
Finally, my coauthors and I observed that the increase in parameters did not always lead to
better performance, for example, while comparing a Skip model with CDLM. This increase
can be attributed to the richer formulation of CDLM. Increasing parameters for CDLM+KN
did not also lead to a better performance against the fewer-parameters CDLM+RNNLM.
My coauthors and I also observed this for CDLM+KN and KN+RNNLM. In this case, my
coauthors and I suspected that the lower performance was due to CDLM’s lack of recursive
connections which form an integral part of RNNLMs. But it was noteworthy that CDLMs,
which are not recurrent, captured much of the long-distance information that the recurrent
language models did, as evidenced by the perplexity experiments.

2.5 Conclusion

In this chapter, I presented the Custom Decay Language Model (CDLM), inspired by skip
models’ log-linear technique of dividing context into smaller bigrams and then recombin-
ing them. In contrast with skip models, CDLMs used a richer formulation by employing a
matrix-based exponentiation method to capture long range dependencies. CDLMs used an
n-gram model to capture the short range regularities.
My coauthors and I observed perplexity improvements for CDLMs even when compared to
skip models with larger range and Kneser-Ney 5-grams. Additionally, the CDLMs that my
coauthors tested used fewer parameters than the larger range skip models and Kneser-Ney
5-grams. CDLMs provided a rich formulation for language modeling where the growth of
number of parameters was constrained.

18 2. Language models can mimic human burstiness

Fortunately for language model research, but perhaps unfortunately for CDLMs, language
model size is not the concern that it was in 2016. For free, in the cloud, I routinely use
open-source languagemodels with billions of parameters. Languagemodels larger than this
exist, but are less often free to use. In short, the property that CDLMs minimally captured
triggering is no longer the impressive feat that it was. I assert, without computationally
verifying, that today’s large languagemodels capture just as much ormore helpful triggering
information. However, it is worth noting that for low-resource languagemodeling, a smaller
language model with fewer connections might be an asset. CDLMs would be a good choice
to model triggering in such a case.

Chapter 3

Language models can make specialized
meaning representations of words

The core idea behind Sequential Recurrent Neural Networks (SRNNs) (Oualil et al., 2016a)
was to combine the benefits of a feedforward neural network (FNN), which captures short-
range context very well, with a recurrent neural network (RNN), which captures long-range
context very well. This network architecture, no longerminimal like the CustomDecay Lan-
guage Model, allowed continuous representations for different positions in the history to
contextualize each other. In addition to presenting state-of-the-art perplexity results for the
time, this work argued that through lateral connections / contextualization, word embed-
dings would become more specialized toward syntactic, rather than semantic relationships.

3.1 Introduction

Contrary to FNN, recurrent models such as RNN and LSTM predict the next word based
only on the current word and the context representation. Therefore, they lose information
about word position rather quickly and cannot model short range dependencies as well as
FNN and n-grams. For example, English has position-dependent patterns such as “he ∗ he”
(“he said he”, “he mentioned he”,…). The position of “he” is essential for making the right
prediction in this case, and the recurrent models are not designed to encode that. Rather,
they are better for smooth incremental updates and hence for longer range dependencies.
This chapter proposes a novel approach that models short range dependencies like FNN
and long range dependencies like RNN. In particular, the hidden layers combine explicit
encoding of the local context and a recurrent architecture, which allows the context infor-
mation to sequentially evolve in the network at the projection layer. In the first step, the
word representation are enhanced using the context information. This step maps the word
representations from a universal embedding space into a context-based space. Then, the

20 3. Language models can make specialized meaning representations of words

system performs the next word prediction as it is typically done in FNN. The learning of the
network weights uses the Back-Propagation Through Time (BPTT) algorithm similarly to
RNN.Themain difference here is the additional network error resulting from the additional
sequential connections. Perplexity experiments showed that learning of word-dependent
sequential connections can substantially improve the performance of the SRNN network.

3.2 Neural network language models

The following two sections report the mathematics behind neural network language models
in general and also the specific architecture of the SRNN. While I did not derive the math-
ematical results or implement the model, I include these sections because working through
them, with the help of my coauthors, helped me form a basis of understanding on how com-
plex language models worked. In addition, I participated actively in interpreting the results.
Finally, I highlight Section 3.5, which was my dedicated work during this project.
The goal of a language model is to estimate the probability distribution p(wT

1) of word se-
quences wT

1 = w1, . . . , wT . Using the chain rule, this distribution can be expressed as

p(wT
1) =

T∏
t=1

p(wt | wt−1
1) (3.1)

The rest of this section shows how FNN and RNN are used to approximate this probability
distribution.

3.2.1 Feedforward neural networks

Similarly ton-grammodels, FNNuses theMarkov assumption of ordern−1 to approximate
p(wT

1) according to

p(wT
1) ≈

T∏
t=1

p(wt | wt−1
t−n+1) (3.2)

Subsequently, each of the terms involved in this product, i.e. p(wt | wt−1
t−n+1), is estimated,

separately, in a single bottom-up evaluation of the network according to

Pt−i = Xt−i · U, i = n−1, . . . , 1 (3.3)

Ht = f

(
n−1∑
i=1

Pt−i · Vi

)
(3.4)

Ot = g(Ht ·W) (3.5)

3.2. Neural network language models 21

Xt−i is a one-hot encoding of the word wt−i, whereas the rows of U encode the continu-
ous word representations (i.e. embeddings). Thus, Pt−i is the continuous representation of
the word wt−i. W and V = [V1, . . . , Vn−1] are the network connection weights, which are
learned during training in addition to U . Moreover, f(·) is an activation function, whereas
g(·) is the softmax function. Figure 3.1 (left) shows an example of an FNN with a fixed
context size n−1 = 3 with a single hidden layer.

2. Neural Network Language Models
The goal of a language model is to estimate the probability dis-
tribution p(wT

1) of word sequences wT
1 = w1, · · · , wT . Using

the chain rule, this distribution can be expressed as

p(wT
1) =

T∏
t=1

p(wt|wt−1
1) (1)

The rest of this section shows how FNN and RNN are used to
approximate this probability distribution.

2.1. Feedforward Neural Networks

Similarly to N -gram models, FNN uses the Markov assumption
of order N-1 to approximate (1) according to

p(wT
1) ≈

T∏
t=1

p(wt|wt−1
t−N+1) (2)

Subsequently, each of the terms involved in this product, i.e,
p(wt|wt−1

t−N+1), is estimated, separately, in a single bottom-up
evaluation of the network according to

Pt−i = Xt−i · U , i = N − 1, · · · , 1 (3)

Ht = f

(
N−1∑
i=1

Pt−i · Vi

)
(4)

Ot = g (Ht ·W) (5)

Xt−i is a one-hot encoding of the word wt−i, whereas the rows
of U encode the continuous word representations (i.e, embed-
dings). Thus, Pt−i is the continuous representation of the word
wt−i. W and V = [V1, · · · , VN−1] are the network connec-
tion weights, which are learned during training in addition to
U . Moreover, f(·) is an activation function, whereas g(·) is the
softmax function. Figure (1a) shows an example of an FNN
with a fixed context size N − 1 = 3 with a single hidden layer.

2.2. Recurrent Neural Networks

An RNN attempts to capture the complete history in a context
vector ht, which represents the state of the network and evolves
in time. Therefore, it approximates (1) according to

p(wT
1) ≈

T∏
t=1

p(wt|wt−1, ht−1) =

T∏
t=1

p(wt|ht) (6)

RNN evaluates this distribution similarly to FNN. The main dif-
ference occurs in Equations (3) and (4) which are combined into

Ht = f (Xt−1 · U +Ht−1 · V) (7)

(a) FNN (b) RNN

Figure 1: FNN vs RNN Architecture.

Figure (1b) shows an example of a standard RNN. The next
Section will show how an RNN can be extended to explicitly
model short range dependencies through additional sequential
connections.

3. Sequential Recurrent Neural Network
The main difference between an RNN and an FNN is the context
representation. More precisely, The context layer Ht of an FNN
is estimated based on a fixed context size i.e, the last N − 1
words, whereas in an RNN, Ht is constantly updated (at each
time iteration) using only the last word and context at time t−1.

3.1. The proposed Neural Architecture

We propose in this paper an architecture which captures short
range dependencies over the last N − 1 word positions as it is
done in FNN, and the long range context through recurrence,
similarly to RNN. The design of this structure is motivated by
the inefficiency of RNN to model position dependent patterns,
which are particularly frequent in conversational speech. RNN
loses information about word position quickly and therefore
cannot efficiently model short range dependencies. FNN and
N-gram models, however, are designed as position-dependent
models, which deal only with short-term context. Extending
RNN structure to explicitly represent the short term history as
it is done in FNN will 1) help improve the modeling of short
range context, as it will 2) allow the network to capture any
residual/additional context information that may be present in
the past i = t−N+1, · · · , t−2 time iterations but which may
have been lost during the last context update, which is based
only on the last word at t − 1 (See illustration in Figure 2). In
the worst case scenario, the context information will be simply
redundant and is expected not to harm the performance. The
rest of this Section introduces the mathematical formulation of
this approach.

-2 0 2

Position: t-4

-2 0 2

Position: t-3

-2 0 2

Position: t-2

-2 0 2

Position: t-1

Figure 2: Histograms of the projection-to-hidden weights
V1,V2,V3 and V4 (see Figure 3) for each of the 4 word positions
of an SRNN (N=5) trained on LTCB. These histograms show
that the magnitude of the weights decays with the word posi-
tion (from t− 1 to t− 4) but does not nullify. Thus, the farther
word positions still capture some residual/additional context.

The proposed Sequential Recurrent Neural Network
(SRNN) approximates (1) according to

p(wT
1)≈

T∏
t=1

p(wt|wt−1
t−N+1, ht−N+1)=

T∏
t=1

p(wt|ht
t−N+2) (8)

The proposed architecture to estimate (8) explicitly represents
the history over the last N − 1 word positions as it is done
in FNN to approximate (2) while it enhances the actual word
representations using the recurrent context information, which
propagates sequentially within the network. Furthermore, re-
stricting the context to a 1-word history window (N=2) in (8)
leads to the RNN approximation in (6). Therefore, the proposed
approach can be seen as an extension of the standard RNN to
explicitly model and capture short range context.

3510

Figure 3.1: FNN versus RNN architecture.

3.2.2 Recurrent neural networks

An RNN attempts to capture the complete history in a context vector ht, which represents
the state of the network and evolves in time. Therefore, it approximates p(wT

1) according to

p(wT
1) ≈

T∏
t=1

p(wt | wt−1, ht−1) =
T∏
t=1

p(wt | ht) (3.6)

RNN evaluates this distribution similarly to FNN. The main difference occurs in Equations
3.3 and 3.4 which are combined into

Ht = f(Xt−1 · U +Ht−1 · V) (3.7)

Figure 3.1 (right) shows an example of a standard RNN. The next section will show how
an RNN can be extended to explicitly model short range dependencies through additional
sequential connections.

22 3. Language models can make specialized meaning representations of words

3.3 Sequential Recurrent Neural Network

The main difference between an RNN and an FNN is the context representation. More pre-
cisely, The context layer Ht of an FNN is estimated based on a fixed context size i.e. the last
n−1words, whereas in an RNN,Ht is constantly updated (at each time iteration) using only
the last word and context at time t−1.

3.3.1 The SRNN neural architecture

My coauthors and I developed SRNN as an architecture which captures short range depen-
dencies over the last n−1 word positions as it is done in FNN, and the long range context
through recurrence, similarly to RNN. The design of this structure is motivated by the in-
efficiency of RNN to model position dependent patterns, which are particularly frequent in
conversational speech. I assert that an RNN loses information about word position quickly
and therefore cannot efficiently model short range dependencies. FNN and n-gram mod-
els, however, are designed as position-dependent models, which deal only with short-term
context. Extending RNN structure to represent the short term history explicitly as it is done
in FNN will help improve the modeling of short range context, as it will allow the network
to capture any residual / additional context information that may be present in the past
i = t−n + 1, . . . , t−2 time iterations but which may have been lost during the last context
update, which is based only on the last word at t−1 (see illustration in Figure 3.2). In the
worst case scenario, the context information will be simply redundant and is expected not
to harm the performance. The rest of this section introduces the mathematical formulation
of this approach.

2. Neural Network Language Models
The goal of a language model is to estimate the probability dis-
tribution p(wT

1) of word sequences wT
1 = w1, · · · , wT . Using

the chain rule, this distribution can be expressed as

p(wT
1) =

T∏
t=1

p(wt|wt−1
1) (1)

The rest of this section shows how FNN and RNN are used to
approximate this probability distribution.

2.1. Feedforward Neural Networks

Similarly to N -gram models, FNN uses the Markov assumption
of order N-1 to approximate (1) according to

p(wT
1) ≈

T∏
t=1

p(wt|wt−1
t−N+1) (2)

Subsequently, each of the terms involved in this product, i.e,
p(wt|wt−1

t−N+1), is estimated, separately, in a single bottom-up
evaluation of the network according to

Pt−i = Xt−i · U , i = N − 1, · · · , 1 (3)

Ht = f

(
N−1∑
i=1

Pt−i · Vi

)
(4)

Ot = g (Ht ·W) (5)

Xt−i is a one-hot encoding of the word wt−i, whereas the rows
of U encode the continuous word representations (i.e, embed-
dings). Thus, Pt−i is the continuous representation of the word
wt−i. W and V = [V1, · · · , VN−1] are the network connec-
tion weights, which are learned during training in addition to
U . Moreover, f(·) is an activation function, whereas g(·) is the
softmax function. Figure (1a) shows an example of an FNN
with a fixed context size N − 1 = 3 with a single hidden layer.

2.2. Recurrent Neural Networks

An RNN attempts to capture the complete history in a context
vector ht, which represents the state of the network and evolves
in time. Therefore, it approximates (1) according to

p(wT
1) ≈

T∏
t=1

p(wt|wt−1, ht−1) =

T∏
t=1

p(wt|ht) (6)

RNN evaluates this distribution similarly to FNN. The main dif-
ference occurs in Equations (3) and (4) which are combined into

Ht = f (Xt−1 · U +Ht−1 · V) (7)

(a) FNN (b) RNN

Figure 1: FNN vs RNN Architecture.

Figure (1b) shows an example of a standard RNN. The next
Section will show how an RNN can be extended to explicitly
model short range dependencies through additional sequential
connections.

3. Sequential Recurrent Neural Network
The main difference between an RNN and an FNN is the context
representation. More precisely, The context layer Ht of an FNN
is estimated based on a fixed context size i.e, the last N − 1
words, whereas in an RNN, Ht is constantly updated (at each
time iteration) using only the last word and context at time t−1.

3.1. The proposed Neural Architecture

We propose in this paper an architecture which captures short
range dependencies over the last N − 1 word positions as it is
done in FNN, and the long range context through recurrence,
similarly to RNN. The design of this structure is motivated by
the inefficiency of RNN to model position dependent patterns,
which are particularly frequent in conversational speech. RNN
loses information about word position quickly and therefore
cannot efficiently model short range dependencies. FNN and
N-gram models, however, are designed as position-dependent
models, which deal only with short-term context. Extending
RNN structure to explicitly represent the short term history as
it is done in FNN will 1) help improve the modeling of short
range context, as it will 2) allow the network to capture any
residual/additional context information that may be present in
the past i = t−N+1, · · · , t−2 time iterations but which may
have been lost during the last context update, which is based
only on the last word at t − 1 (See illustration in Figure 2). In
the worst case scenario, the context information will be simply
redundant and is expected not to harm the performance. The
rest of this Section introduces the mathematical formulation of
this approach.

-2 0 2

Position: t-4

-2 0 2

Position: t-3

-2 0 2

Position: t-2

-2 0 2

Position: t-1

Figure 2: Histograms of the projection-to-hidden weights
V1,V2,V3 and V4 (see Figure 3) for each of the 4 word positions
of an SRNN (N=5) trained on LTCB. These histograms show
that the magnitude of the weights decays with the word posi-
tion (from t− 1 to t− 4) but does not nullify. Thus, the farther
word positions still capture some residual/additional context.

The proposed Sequential Recurrent Neural Network
(SRNN) approximates (1) according to

p(wT
1)≈

T∏
t=1

p(wt|wt−1
t−N+1, ht−N+1)=

T∏
t=1

p(wt|ht
t−N+2) (8)

The proposed architecture to estimate (8) explicitly represents
the history over the last N − 1 word positions as it is done
in FNN to approximate (2) while it enhances the actual word
representations using the recurrent context information, which
propagates sequentially within the network. Furthermore, re-
stricting the context to a 1-word history window (N=2) in (8)
leads to the RNN approximation in (6). Therefore, the proposed
approach can be seen as an extension of the standard RNN to
explicitly model and capture short range context.

3510

Figure 3.2: Histograms of the projection-to-hidden weights V1, V2, V3, and V4 (see Fig-
ure 3.3) for each of the 4 word positions of an SRNN (n = 5) trained on LTCB.
These histograms show that the magnitude of the weights decays with the word
position (from t− 1 to t− 4) but does not nullify. Thus, the model successfully
captured some good short-range dependencies.

3.3. Sequential Recurrent Neural Network 23

The Sequential Recurrent Neural Network (SRNN) approximates p(wT
1) according to

p(wT
1) ≈

T∏
t=1

p(wt | wt−1
t−n+1, ht−n+1) =

T∏
t=1

p(wt | ht
t−n+2) (3.8)

Thus, as shown in Equation 3.8, the SRNN architecture explicitly represents the history over
the lastn−1word positions in themanner of an FNN (Equation 3.2), but enhances the actual
word representations using the recurrent context information, which propagates sequen-
tially within the network. Furthermore, setting the context to a one word history window
(n = 2) in Equation 3.8 leads to the RNN approximation in Equation 3.6. Therefore, the
SRNN approach can be seen as an extension of the standard RNN to explicitly model and
capture short range context.
The additional sequential connections allow the context information to propagate from
the past to the future within the network. These connections can be defined as a Word-
Independent (WI) recurrence vector, which fixes the amount of context information allowed
to propagate in the network, as they can be designed as Word-Dependent (WD) vectors. In
this case, each word will have its own context weight vector, which will typically learn which
context “neurons” are relevant for that particular word and therefore scales each context unit
accordingly.
The network evaluation is performed similarly to FNN, the main difference occurs in Equa-
tion 3.3, which becomes in the case of the word-independent model (WI-SRNN)

Pt−i = fs(Xt−i · U + C ⊙ Pt−i−1), i = n−1, . . . , 1 (3.9)

as it becomes in the case of the word-dependent model (WD-SRNN)

Pt−i = fs(Xt−i · U + Cwt−i ⊙ Pt−i−1), i = n−1, . . . , 1 (3.10)

where fs(·) is an activation function and ⊙ is the element-wise product operator. C is the
word-independent recurrence weight vector, whereas Cwt−i is the word-dependent context
weight corresponding to word wt−i.
The SRNNmodel replaces the universal word embeddings at the projection layer of an FNN
by context-dependent word embeddings. More particularly, both Equations 3.9 and 3.10
show that each word representation is enhanced using the context information before pro-
ceeding to the next word prediction. Therefore, this particular step could be seen as a trans-
formation from the universal embedding space into a context-dependent space with a better
discrimination of words.

24 3. Language models can make specialized meaning representations of words

The additional sequential connections allow the context in-
formation to propagate from the past to the future within the net-
work. These connections can be defined as a Word-Independent
(WI) recurrence vector, which fixes the amount of context in-
formation allowed to propagate in the network, as they can be
designed as Word-Dependent (WD) vectors. In this case, each
word will have its own context weight vector, which will typi-
cally learn which context “neurons” are relevant for that partic-
ular word and therefore scales each context unit accordingly.

Figure 3: Sequential Recurrent Neural Network architecture.
The backward path (red arrows) shows the error propagation
during training (this figure does not include BPTT).

The network evaluation is performed similarly to FNN, the
main difference occurs in Equation (3), which becomes in the
case of the word-indepdent model

Pt−i = fs(Xt−i ·U+C�Pt−i−1), i = N−1, · · · , 1 (9)

as it becomes in the case of the word-dependent model

Pt−i=fs(Xt−i ·U+Cwt−i�Pt−i−1), i = N−1, · · · , 1 (10)

where fs(·) is an activation function and � is the element-
wise product operator. C is the word-independent recurrence
weight vector, whereas Cwt−i is the word-dependent context
weight corresponding to the word wt−i. Figure (3) shows an
example of an SRNN with three additional sequential connec-
tions (N − 1 = 3) and a single hidden layer.

The proposed SRNN model is a general architecture that in-
cludes different networks. In particular, setting C = [0, · · · , 0]
and fs(x)=x results in the classical FNN architecture, whereas
setting N = 2 leads to a standard RNN with a diagonal re-
currence matrix and an additional non-recurrent layer. More-
over, setting C to a fixed value in [0, 1] and fs(x) = x leads
to the Fixed-size Ordinally-Forgetting Encoding (FOFE) [11]
architecture, which was proposed to uniquely encode word se-
quences.

The proposed model replaces the universal word embed-
dings at the projection layer of an FNN by context-dependent
word embeddings. More particularly, both Equations (9) and
(10) show that each word representation is enhanced using the
context information before proceeding to the next word pre-
diction. Therefore, we can see this particular step as a trans-
formation from the universal embedding space into a context-
dependent space with a better discrimination of words.

3.2. SRNN Training

The parameters to train for an SRNN are the word em-
beddings U , the project-to-hidden connection weights V =
[V1, · · · , VN−1], the hidden-to-output connection weights W
and the context weight vector C for the WI model, or C =
[Cᵀ

1 , · · · , C
ᵀ
K]ᵀ (K is the vocabulary size) for the WD model.

In this case, each word w in the vocabulary will be characterized
by two learnable vectors, namely, the continuous representation
(embedding) Uw and the context weight Cw.

Similarly to RNN, the parameter learning of an SRNN
architecture follows the standard Back-Propagation Through
Time (BPTT) algorithm. The main difference occurs at the pro-
jection layer, where the additional error vectors resulting from
the sequential connections should be taken into account (See
example or error propagation in Figure 3) before unfolding the
network in time.

4. Experiments and Results
4.1. Experimental Setup

We evaluated the proposed architecture on two different bench-
mark tasks. The first set of experiments was conducted on
the Penn Treebank (PTB) corpus using the standard division,
e.g. [9, 11]: sections 0-20 are used for training while sections
21-22 and 23-24 are used for validation and testing. The vo-
cabulary was limited to the most 10k frequent words while the
remaining words were all mapped to the token <unk>. In
order to evaluate how the proposed approach scales to large
corpora, we run a set of experiments on the Large Text Com-
pression Benchmark (LTCB) [12]. This corpus is based on the
enwik9 dataset which contains the first 109 bytes of enwiki-
20060303-pages-articles.xml. We adopted the same training-
test-validation data split and preprocessing from [11]. All but
the 80k most frequent words were replaced by <unk>. Details
about the sizes of these two corpora and the percentage of Out-
Of-Vocabulary (OOV) words that were mapped to <unk> can
be found in Table 1.

Table 1: Corpus size in number of words and <unk> rate.

Train Dev Test
Corpus #W <unk> #W <unk> #W <unk>

PTB 930K 6.52% 82K 6.47% 74K 7.45%
LTCB 133M 1.43% 7.8M 2.15% 7.9M 2.30%

The proposed approach (SRNN) is compared to differ-
ent systems including the N -gram Kneser-Ney (KN) model
and different feedforward and recurrent neural architectures.
For feedforward networks, the baseline systems include 1) the
FNN-based LM [5] as well as the 2) Fixed-size Ordinally For-
getting Encoding (FOFE) approach, which was implemented as
a feedforward sentence-based model [11]. The FOFE results
were obtained using the FOFE toolkit [11]. The results are re-
ported for different context sizes (N-1=1,2 and 4) and different
numbers of hidden layers (1 or 2). Regarding recurrent models,
we compare the proposed approach to 3) the full RNN (without
classes) [9], 4) to a deep RNN [13], which investigates differ-
ent ways of adding hidden layers to RNN, and finally 5) to the
LSTM architecture [10], which explicitly regulates the amount
of information that propagates in the network.

4.2. PTB Experiments

For the PTB experiments, the FNN, FOFE and SRNN architec-
tures have similar configurations. That is, the hidden layer(s)
size is 400 with all hidden units using the Rectified Linear
Unit (ReLu) i.e., f(x) = max(0, x), as an activation function,
whereas the word representation (embedding) size was set to
200 for FNN, FOFE and LSTM and 100 for SRNN. The latter
uses fs = tanh(·) as sequential activation function. The hid-
den layer size of RNN and LSTM were set to 400 and follow
the original configuration proposed in [9] and [10], respectively.

3511

Figure 3.3: Sequential Recurrent Neural Network architecture. The red arrows show the
error propagation during training (this figure does not include BPTT).

Figure 3.3 shows an example of an SRNN with three additional sequential connections
(n−1 = 3) and a single hidden layer. As shown, this is a general architecture that includes
different networks. In particular, setting C = [0, . . . , 0] and fs(x) = x results in the clas-
sical FNN architecture, whereas setting n = 2 leads to a standard RNN with a diagonal
recurrence matrix and an additional non-recurrent layer. Moreover, setting C to a fixed
value in [0, 1] and fs(x) = x leads to the Fixed-size Ordinally-Forgetting Encoding (FOFE)
(Zhang et al., 2015) architecture, which was proposed to uniquely encode word sequences.

3.3.2 SRNN training

The parameters to train for an SRNN are the word embeddings U , the project-to-hidden
connection weights V = [V1, . . . , Vn−1], the hidden-to-output connection weights W and
the context weight vector C for the WI model, or C = [Ct

1, . . . , C
t
K]

t, where K is the vo-
cabulary size, for the WD model. In this case, each word w in the vocabulary will be char-
acterized by two learnable vectors, namely, the continuous representation (embedding) Uw

and the context weight Cw. Similarly to RNN, the parameter learning of an SRNN archi-
tecture follows the standard Back-Propagation Through Time (BPTT) algorithm. The main
difference occurs at the projection layer, where the additional error vectors resulting from
the sequential connections should be taken into account (See example or error propagation
in Figure 3.3) before unfolding the network in time.

3.4 Experimental setup

My coauthors evaluated SRNN models on two different benchmark tasks. The first set of
experiments was conducted on the Penn Treebank (PTB) corpus using the standard divi-
sion (e.g. Mikolov et al., 2011c; Zhang et al., 2015): sections 0-20 are used for training while
sections 21-22 and 23-24 are used for validation and testing. The vocabulary was limited to

3.4. Experimental setup 25

the top 10k most-frequent words while the remaining words were all mapped to the token
<unk>. In order to evaluate how the SRNN approach scales to large corpora, my coauthors
ran a set of experiments on the Large Text Compression Benchmark (LTCB) (Mahoney,
2011). This corpus is based on the enwik9 dataset which contains the first 109 bytes of
enwiki20060303-pages-articles.xml. My coauthors adopted the same training-test-
validation data split and preprocessing from Zhang et al. (2015). All but the top 80k most
frequent words were replaced by <unk>. Table 3.1 gives details about the sizes of these two
corpora and the percentage of out-of-vocabulary (OOV) words that were mapped to <unk>.

Train Dev Test
Corpus Tokens OOV Tokens OOV Tokens OOV
PTB 930K 6.52% 74K 6.47% 82K 7.45%
LTCB 133M 1.43% 7.8M 2.15% 7.9M 2.30%

Table 3.1: Corpus size in number of tokens and OOV rate.

SRNN models are compared to different systems including the n-gram Kneser-Ney (KN)
model and different feedforward and recurrent neural architectures. For feedforward net-
works, the baseline systems include

1. the FNN-based LM (Bengio et al., 2003)

2. Fixed-size Ordinally Forgetting Encoding (FOFE) approach, which was implemented
as a feedforward sentence-based model. The FOFE results were obtained using the
FOFE toolkit (Zhang et al., 2015). The results are reported for different context sizes
(n− 1 = 1, 2, 4) and different numbers of hidden layers (1 or 2).

Regarding recurrent models, my coauthors and I compared SRNN models to

3. the full RNN (without classes) (Mikolov et al., 2011c)

4. a deep RNN (Pascanu et al., 2014), which investigates different ways of adding hidden
layers to RNN

5. the LSTM architecture (Sundermeyer, Schlüter, and Ney, 2012), which explicitly reg-
ulates the amount of information that propagates in the network

3.4.1 PTB experiments

For the PTB experiments, the FNN, FOFE and SRNN architectures have similar configura-
tions. That is, the hidden layer(s) size is 400 with all hidden units using the rectified linear
unit i.e. f(x) = max(0, x), as an activation function, whereas the word representation (em-
bedding) size was set to 200 for FNN, FOFE and LSTM and 100 for SRNN. The latter uses
fs = tanh(·) as sequential activation function. The hidden layer size of RNN and LSTM

26 3. Language models can make specialized meaning representations of words

were set to 400 and follow the original configuration proposed by Mikolov et al. (2011c)
and Sundermeyer, Schlüter, and Ney (2012), respectively. My coauthors also used the same
learning setup adopted in Zhang et al. (2015). Namely, the minibatch size for stochastic
gradient descent was 200, the learning rate was initialized to 0.4, the momentum was set to
0.9, the weight decay was fixed to 4 · 10−5 and the training was done in epochs. The weights
initialization follows the normalized initialization proposed by Glorot and Bengio (2010).
Similarly to Mikolov et al. (2010), the learning rate is halved when no substantial improve-
ment in the log-likelihood of the validation data is observed. Then, training continued with
seven more epochs while halving the learning rate after each epoch. The BPTT was set to 5
time steps. For both models, the context connection weights, C , were randomly initialized
in [0, 1]. In order to compare to the FOFE approach, my coauthors and I also reported re-
sults where C was reduced to a scalar forgetting factor that is fixed at 0.7. This is denoted as
WI-SRNN∗ in the tables below. I report the results in terms of perplexity (PPL), Number of
model Parameters (NoP), and the training speed, which is defined as the number of words
processed per second (w/s) on a GTX TITAN X GPU.

3.4.2 LTCB experiments

The LTCB experiments used the same PTB setup with minor changes. My coauthors con-
tinued to use the same experimental setup used in Zhang et al. (2015). More precisely, these
results were obtained without usage of momentum or weight decay whereas the mini-batch
size was set to 400. The FNN and FOFE architectures contain 2 hidden layers of size 600 (or
400) whereas RNN and SRNN have a single hidden layer of size 600. In order to compare
to Zhang et al. (2015), the forgetting factor C of WI-SRNN∗ is fixed at 0.6.

3.5 Word embedding evaluation

in strictly germany
Uw Cw Uw Cw Uw Cw

into at solely purely italy japan
throughout on rigidly totally france russia
through for broadly physically britain italy
during their purely solely switzerland france
within to ostensibly technically england spain

Table 3.2: Examples of top 5 similar words.

One ofmy individual contributions to this project was streamlining the process for obtaining
similarity scores, relatedness scores, analogy completions, and nearest neighbors for various
sets of word embeddings. Table 3.2 shows some word examples that I found with their top 5

3.6. Results 27

cosine similarities for word embeddings Uw and Euclidean distance for context weightsCw.
Spot-checking different embeddings led me to believe that the “universal” SRNN embed-
dings captured semantic (conceptual) similarities, while the context weights captured more
syntactic (functional) similarities. For example, the universal embeddings had high cosines
between related words like “car”, “wheel”, “drive”, and “vehicular”. The context weights were
much more constrained with respect to part of speech, so the nearest words to “car” would
have been more like “truck”, “van”, and “automobile”.

3.6 Results

Architecture model model+KN5 NoP w/s
n− 1 = 1 2 4 1 2 4 4 4

1 Hidden Layer
FNN 176 131 119 132 116 107 6M 24K
FOFE 123 111 112 108 100 101 6M 17K

WI-SRNN* 117 110 109 105 100 99 5M 13K
WI-SRNN 112 107 107 102 98 97 5M 11K
WD-SRNN 109 106 106 99 96 95 6M 10K

2 Hidden Layers
FNN 176 129 114 132 114 102 6M 22K
FOFE 116 108 109 104 98 97 6M 17K

WI-SRNN* 114 108 107 102 98 96 5M 11K
WI-SRNN 109 105 104 99 96 94 5M 10K
WD-SRNN 108 103 104 97 94 94 6M 9K

Recurrent Models
RNN 123 107 8M 21

Deep RNN 108 – 7M –
LSTM 114 99 7M 8K

Table 3.3: Language model performance (PPL) on the PTB test set.

Table 3.3 shows the LMs evaluation on the PTB test set. My coauthors and I observed that
SRNN models outperformed all other models using the lowest Number of model Param-
eters (NoP) among all configurations. This also includes other models that were reported
in the literature, such as RNN with maximum entropy (Mikolov et al., 2011b), random for-
est LM (Xu and Jelinek, 2007), structured LM (Filimonov and Harper, 2009) and syntactic
neural network LM (Emami and Jelinek, 2004). More particularly, SRNN with two hidden
layers achieved a comparable performance to amixture of RNNs (Mikolov et al., 2011a). My
coauthors and I concluded that the explicit modeling of short range dependencies through
sequential connections improved the performance. More precisely, the results show that

28 3. Language models can make specialized meaning representations of words

increasing the history window (1, 2 and 4) improves the performance for all SRNN models.
Table 3.3 also shows that using a fixed scalar forgetting factor (WI-SRNN∗) leads to a slight
improvement over the FOFE approach, which is mainly due to the additional non-linear
activation function fs. Furthermore, the word-dependent (WD-SRNN) model slightly out-
performs the word-independent model (WI-SRNN) but with a non-negligible increase in
the number of parameters. Regarding the training speed, my coauthors and I concluded
that training an SRNN model requires approximately twice the time needed for FFN and
RNN, whereas it needs less time compared to LSTM.

Architecture model NoP
n− 1 = 1 2 4 4

KN 239 156 132 –
FNN [M∗200]-600-600 235 150 114 65M
FOFE [M∗200]-400-400 120 115 108 48M
FOFE [M∗200]-600-600 112 107 100 65M
WI-SRNN* [M∗200]-600 110 102 94 65M
WI-SRNN [M∗200]-600 85 80 77 65M
WD-SRNN [M∗200]-600 77 74 72 80M
RNN [600]-600 85 96M

Table 3.4: Language model performance (PPL) on the LTCB test set.

The LTCB results shown in Table 3.4 generally confirm the PTB conclusions. In particu-
lar, the SRNN models outperformed all other models while requiring comparable or fewer
model parameters. Moreover, the WI-SRNN∗model with a single hidden layer slightly out-
performs FOFE (2 hidden layers). These results, however, show a larger improvement for
the WD-SRNN model and for the increased window size (from 1 to 4) compared to the im-
provement obtained on the PTB. This is mainly due to the large amount of LTCB training
data, which allows the model to learn richer WD context vectors.

3.7 Conclusion and outlook

This chapter presented the SRNN architecture, which captures short range dependencies
using short history windows and models long range context through recurrent connections.
At publication time, this model had state-of-the-art perplexity. Most likely by simultaneous
innovation, SRNNs and Transformers share many properties. Specifically, the lateral con-
nections in SRNNs had a similar function to attention in the encoder. The biggest difference
was the separate handling of short and long range context in SRNN. Transformers can treat
up to 2048 words as “short range” context. Some later approaches such as Transformer-XL
(Dai et al., 2019) attempted to preserve the theoretically infinite context afforded by recur-
rent models like SRNN, but GPT models remain much more popular.

Chapter 4

Language models can be optimized for
cohesion

When I presented the long-short range context (LSRC) languagemodel (Oualil et al., 2016b),
I mixed vinegar, representing an LSTM node, with baking soda, representing an additional
recurrence. The point was that even LSTMs benefit from extra power and cleaner separa-
tion of long and short context. LSRCmodels maintain a fully separate state vector to capture
short range context. As such, the long range part was free to adapt more slowly, mirroring
how human language preserves cohesion. This third novel architecture marked a transi-
tion from expanded power gained from connections between nodes to power gained from
additional complexity within nodes.

4.1 Introduction

In order to overcome the short context constraint and capture long range dependencies
known to be present in language, Bellegarda (1998b) proposed to use Latent Semantic Anal-
ysis (LSA) to capture the global context, and then combine it with the standardn-grammod-
els, which capture the local context. Similarly, Mikolov and Zweig (2012) showed that re-
current neural network (RNN)-based LM performance can be significantly improved using
an additional global topic information obtained using Latent Dirichlet Allocation (LDA). In
fact, although recurrent architectures theoretically allow the context to indefinitely cycle in
the network, Le, Allauzen, and Yvon (2012) have shown that, in practice, this information
changes quickly in the classical RNN (Mikolov et al., 2010) structure, and that it is exper-
imentally equivalent to an 8-gram FNN. Despite its name, the Long-Short Term Memory
(LSTM) network (Sundermeyer, Schlüter, and Ney, 2012) does not maintain separate long
and short term memory states. Rather, it uses multiple gates to control the flow of informa-
tion into, within, and out of its single state.

30 4. Language models can be optimized for cohesion

Motivated by the works in Bellegarda (1998b) and Mikolov and Zweig (2012), this chapter
discusses one final novel neural architecture which explicitly models 1) the local (short)
context information, generally syntactic, as well as 2) the global (long) context, which is
semantic in nature, using two separate recurrent hidden states. These states evolve in parallel
within an LSRC. In doing so, the LSRC architecture is particularly adapted to model natural
languages that manifest local-global context information in their linguistic properties.

4.2 Short vs. long context language models

As with the analogous section in Chapter 3, the point of including this section is that this
discussion is how I worked through the connections present in the most intricate, pre-
Transformer language models. In particular, my coauthors and I decided to leave the LSTM
equations in the publication for the express purpose of providing a comparison between an
LSTM node and an LSRC node. For good measure, this section shows that mathematically
and diagrammatically. Finally, my individual contribution for the LSRC project was the
investigation of context range (Section 4.4).
The goal of a language model is to estimate the probability distribution p(wT

1) of word se-
quences wT

1 = w1, . . . , wT . Using the chain rule, this distribution can be expressed as

p(wT
1) =

T∏
t=1

p(wt | wt−1
1) (4.1)

This probability is generally approximated under different simplifying assumptions, which
are typically derived based on different linguistic observations. All these assumptions, how-
ever, aim at modeling the optimal context information, be it syntactic and / or semantic, to
perform the word prediction. The resulting models can be broadly classified into two main
categories: long and short range context models. The rest of this section presents a brief
overview of these categories with a particular focus on neural models.

4.2.1 Short range context

This category includes models that approximate p(wT
1) based on the Markov independence

assumption of order n−1. That is, the prediction of the current word depends only on the
last n−1 words in the history. In this case, p(wT

1) is approximated by

p(wT
1) ≈

T∏
t=1

p(wt | wt−1
t−n+1) (4.2)

4.2. Short vs. long context language models 31

The most popular methods that subscribe in this category are the n-gram models (Rosen-
feld, 2000; Kneser and Ney, 1995) as well as the FNN model (Bengio et al., 2003), which
estimates each of the terms involved in this product, i.e. p(wt | wt−1

t−n+1) in a single bottom-
up evaluation of the network.
Although these methods perform well and are easy to learn, the natural languages that they
try to encode, however, are not generated under aMarkovmodel due to their dynamic nature
and the long range dependencies they manifest. Relaxing this untrue assumption has led to
extensive research to develop more suitable modeling techniques.

4.2.2 Long range context

Conventionally, n-gram LMs are not built to capture long range dependencies, although
there is substantial word triggering across long distances as shown in Chapter 1. In order to
model long-range dependencies and overcome the restrictiveMarkov assumption, recurrent
language models have been proposed to approximate p(wT

1) according to

p(wT
1) ≈

T∏
t=1

p(wt | wt−1, ht−1) =
T∏
t=1

p(wt | ht) (4.3)

In NN-based recurrent models, ht is a context vector which represents the complete history,
and modeled as a hidden state that evolves within the network.

Elman-type RNN-based LM

The classical RNN (Mikolov et al., 2010) estimates each of the product terms in Equation
4.3 according to

Ht = f(Xt−1 + V ·Ht−1) (4.4)
Pt = g(W ·Ht) (4.5)

whereXt−1 is a continuous representation , i.e. embedding, of the wordwt−1, V encodes the
recurrent connectionweights andW is the hidden-to-output connectionweights. These pa-
rameters define the network and are learned during training. Moreover, f(·) is an activation
function, and g(·) is the softmax function. The right panel of Figure 3.1 shows an example
of the standard RNN architecture.
Theoretically, the recurrent connections of an RNN allow the context to indefinitely cycle in
the network and thus, modeling long context. In practice, however, Le, Allauzen, and Yvon
(2012) have shown that this information changes quickly over time, and that it is experi-
mentally equivalent to an 8-gram FNN. This observation was confirmed by the experiments
that reported in this chapter.

32 4. Language models can be optimized for cohesion

Long-Short Term Memory network

In order to alleviate the rapidly changing context issue in standard RNNs and control the
longevity of the dependencies modeling in the network, the LSTM architecture (Sunder-
meyer, Schlüter, and Ney, 2012) introduces an internal memory state Ct, which explicitly
controls the amount of information, to forget or to add to the network, before estimating
the current hidden state. Formally, this is done according to

{i, f, o}t = σ
(
U i,f,o ·Xt−1 + V i,f,o ·Ht−1

)
(4.6)

C̃t = f(U c ·Xt−1 + V c ·Ht−1) (4.7)
Ct = ft ⊙ Ct−1 + it ⊙ C̃t (4.8)
Ht = ot ⊙ f(Ct) (4.9)
Pt = g(W ·Ht) (4.10)

where ⊙ is the element-wise multiplication operator, C̃t is the memory candidate, whereas
it, ft and ot are the input, forget and output gates of the network, respectively. Figure 4.1
illustrates the recurrent module of an LSTM network. Tuning an LSTM model requires the
training of the network parameters U i,f,o,c, V i,f,o,c and W .

Figure 3: Block diagram of the recurrent module of an LSTM

network.

3 Multi-Span Language Models

The attempts to learn and combine short and long
range dependencies in language modeling led to
what is known as multi-span LMs (Bellegarda,
1998a). The goal of these models is to learn the
various constraints, both local and global, that are
present in a language. This is typically done using
two different models, which separately learn the lo-
cal and global context, and then combine their re-
sulting linguistic information to perform the word
prediction. For instance, Bellegarda (1998b) pro-
posed to use Latent Semantics Analysis (LSA) to
capture the global context, and then combine it with
the standard N -gram models, which capture the lo-
cal context, whereas Mikolov and Zweig (2012)
proposed to model the global topic information us-
ing Latent Dirichlet Allocation (LDA), which is then
combined with an RNN-based LM. This idea is not
particular to language modeling but has been also
used in other Natural Language Processing (NLP)
tasks, e.g., Anastasakos et al. (2014) proposed to use
a local/global model to perform a spoken language
understanding task.

3.1 Long-Short Range Context Network

Following the line of thoughts in (Bellegarda,
1998b; Mikolov and Zweig, 2012), we propose a
new multi-span model, which takes advantage of the
LSTM ability to model long range context while,
simultaneously, learning and integrating the short
context through an additional recurrent, local state.
In doing so, the resulting Long-Short Range Con-
text (LSRC) network is able to separately model the

short/long context while it dynamically combines
them to perform the next word prediction task. For-
mally, this new model is defined as

H l
t = f

(
Xt−1 + U c

l ·H l
t−1

)
(11)

{i, f, o}t = σ
(
V i,f,o
l ·H l

t + V i,f,o
g ·Hg

t−1

)
(12)

C̃t = f
(
V c
l ·H l

t + V c
g ·Hg

t−1

)
(13)

Ct = ft � Ct−1 + it � C̃t (14)

Hg
t = ot � f (Ct) (15)

Pt = g (W ·Hg
t) (16)

Learning of an LSRC model requires the training
of the local parameters V i,f,o,c

l and U c
l , the global

parameters V i,f,o,c
g and the hidden-to-output connec-

tion weightsW . This can be done using the standard
Back-Propagation Through Time (BPTT) algorithm,
which is typically used to train recurrent networks.

The proposed approach uses two hidden states,
namely, H l

t and Hg
t to model short and long range

context, respectively. More particularly, the local
state H l

t evolves according to (11) which is noth-
ing but a simple recurrent model as it is defined in
(4). In doing so, H l

t is expected to have a similar be-
havior to RNN, which has been shown to capture
local/short context (up to 10 words), whereas the
global state Hg

t follows the LSTM model, which is
known to capture longer dependencies (see example
in Figure 5). The main difference here, however, is
the dependence of the network modules (gates and
memory candidate) on the previous local state H l

t

instead of the last seen word Xt−1. This model is
based on the assumption that the local context car-
ries more linguistic information, and is therefore,
more suitable to combine with the global context and
update LSTM, compared to the last seen word. Fig-
ure 4 illustrates the recurrent module of an LSRC
network. It is worth mentioning that this model was
not particularly developed to separately learn syn-
tactic and semantic information. This may come,
however, as a result of the inherent local and global
nature of these two types of linguistic properties.

3.2 Context Range Estimation
For many NLP applications, capturing the global
context information can be a crucial component to
develop successful systems. This is mainly due to

1476

Figure 4.1: Block diagram of a recurrent node in an LSTM network.

Although LSTM models have been shown to outperform classical RNN in modeling long
range dependencies, they do not explicitly model long / short context but rather use a single
state to encode the global linguistic context.

4.3 Multi-span language models

The attempts to learn and combine short and long range dependencies in language model-
ing led to what is known as multi-span LMs (Bellegarda, 1998b). The goal of these models is
to learn the various constraints, both local and global, that are present in natural language.

4.3. Multi-span language models 33

This is typically done using two different models, which separately learn the local and global
context, and then combine their resulting linguistic information to perform the word pre-
diction. For instance, Bellegarda (1998a) proposed to use Latent Semantic Analysis (LSA)
to capture the global context, and then combine it with the standard n-gram models, which
capture the local context, whereas Mikolov and Zweig (2012) proposed to model the global
topic information using Latent Dirichlet Allocation (LDA), which is then combined with an
RNN-based LM. This idea is not particular to language modeling but has been also used in
other Natural Language Processing (NLP) tasks, e.g., Anastasakos, Kim, and Deoras (2014)
proposed to use a local / global model to perform a spoken language understanding task.

4.3.1 Long-Short Range Context network

Following the line of thought in Bellegarda (1998a) andMikolov andZweig (2012), my coau-
thors and I put forward a new multi-span model, which takes advantage of the LSTM abil-
ity to model long range context while, simultaneously, learning and integrating the short
context through an additional recurrent, local state. In doing so, the resulting Long-Short
Range Context (LSRC) network is able to separately model the short / long context while it
dynamically combines them to perform the next word prediction. Formally, this newmodel
is defined as

H l
t = f

(
Xt−1 + U c

l ·H l
t−1

)
(4.11)

{i, f, o}t = σ
(
V i,f,o
l ·H l

t + V i,f,o
g ·Hg

t−1

)
(4.12)

C̃t = f(V c
l ·H l

t + V c
g ·Hg

t−1) (4.13)
Ct = ft ⊙ Ct−1 + it ⊙ C̃t (4.14)
Hg

t = ot ⊙ f(Ct) (4.15)
Pt = g(W ·Hg

t) (4.16)

Tuning an LSRC model requires the training of the local parameters V i,f,o,c
l and U c

l , the
global parameters V i,f,o,c

g , and the hidden-to-output connection weights W . This can be
done using the standard Back-Propagation Through Time (BPTT) algorithm, which is typ-
ically used to train recurrent networks.
The LSRC approach uses two hidden states, namely, H l

t and Hg
t to model short and long

range context, respectively. More particularly, the local state H l
t evolves according to Equa-

tion 4.11 which is nothing but a simple recurrent model as it is defined in Equation 4.4. In
doing so, H l

t is expected to have a similar behavior to RNN, which has been shown to cap-
ture local / short context (up to 10 words), whereas the global state Hg

t follows the LSTM
model, which is known to capture longer dependencies (see example in Figure 4.3). The
main difference here, however, is the dependence of the network modules (gates and mem-
ory candidate) on the previous local stateH l

t instead of the last seen wordXt−1. This model

34 4. Language models can be optimized for cohesion

is based on the assumption that the local context carries more linguistic information, and
is therefore, more suitable to combine with the global context and update the LSTM, com-
pared to the last seen word. Figure 4.2 illustrates the recurrent module of an LSRC network.
It is worth mentioning that this model was not particularly developed to separately learn
syntactic and semantic information. This may come, however, as a result of the inherent
local and global nature of these two types of linguistic properties.

Figure 4.2: Block diagram of a recurrent node in an LSRC network.

4.4 Context range estimation

For many NLP applications, capturing the global context information can be a crucial com-
ponent to developing successful systems. This is mainly due to the inherent nature of lan-
guage, where a single idea or topic can span over few sentences, paragraphs or a complete
document. LSA-like approaches take advantage of this property, and aim at extracting some
hidden “concepts” that best explain the data in a low-dimension “semantic space”. To some
extent, the hidden layer of LSRC / LSTM can be seen as a vector in a similar space. The infor-
mation stored in this vector, however, changes continuously based on the processed words.
Moreover, interpreting its content is generally difficult. As an alternative, measuring the
temporal correlation of this hidden vector, i.e. the extent to which the vector changes over
time, can be used as an indicator of the ability of the network to model short and long con-
text dependencies. Formally, the temporal correlation of a hidden state H over a distance d
is given by

cd =
1

D

D∑
t=1

SM(Ht, Ht+d) (4.17)

where D is the number of tokens in the test corpus and SM is a similarity measure such as
cosine similarity. This measure allows us to evaluate how fast the information stored in the
hidden state changes over time.

4.5. Experiments and results 35

Figure 4.3: Temporal correlation of LSRC states in comparison to LSTM and RNN.

Figure 4.3 shows how the variation of this temporal correlation for the local and global states
of the LSRC network in comparison to RNN and LSTM for various values of the distance d
(up to 3000). This figure was obtained on the test set of the Penn Treebank (PTB) corpus,
described in Section 4.5. The main conclusion that my coauthors and I drew from this fig-
ure is the ability of the LSRC local and global states (trained jointly) to behave in a similar
fashion to RNN and LSTM states (trained separately). My coauthors and I concluded that
the LSRC global state and LSTM are able to capture long range correlations, whereas the
context changes rapidly over time in RNN and LSRC local state.

4.5 Experiments and results

4.5.1 Experimental setup

As in the two previous chapters, my coauthors evaluated the LSRC architecture on the Penn
Treebank (PTB) and Large Text Compression Benchmark (LTCB) corpora. Details about
the sizes of these two corpora can be found in Table 4.1.

Corpus Train Dev Test
PTB 930K 74K 82K
LTCB 133M 7.8M 7.9M

Table 4.1: Corpus size in number of tokens.

My coauthors and I decided for this project to use just a single end sentence tag between
each two consecutive sentences, rather than use a separate begin sentence tag1. Also, my
coauthors used the same baseline models as discussed in Section 3.4.

1This explains the difference in the corpus size compared to the one reported in Zhang et al. (2015).

36 4. Language models can be optimized for cohesion

4.5.2 PTB experiments

For the PTB experiments, the FNN and FOFE models use a word embedding size of 200,
whereas the hidden layer(s) size is fixed at 400, with all hidden units using the rectified
linear unit, i.e. f(x) = max(0, x) as activation function. My coauthors also used the same
learning setup adopted in Zhang et al. (2015). Namely, the mini-batch size for stochastic
gradient descent algorithm was 200. The learning rate was initialized to 0.4, the momentum
was set to 0.9, the weight decay was fixed at 4·10−5, and the training was done in epochs. The
weights initialization followed the normalized initialization proposed by Glorot and Bengio
(2010). Similarly to Mikolov et al. (2010), the learning rate was halved when no substantial
improvement of the validation data log-likelihood was observed. Then, training continued
with seven more epochs while halving the learning rate after each epoch.
Regarding the recurrent models, my coauthors used f = tanh(·) as the activation function
for all recurrent layers, whereas f = sigmoid(·) was used for the input, forget, and output
gates of LSTM and LSRC. The additional non-recurrent layer in D-LSRC, however, used the
rectified linear unit activation function. The word embedding size was set to 200 for LSTM
and LSRC whereas it was the same as the hidden layer size for RNN (result of the RNN
equation 4). To illustrate the effectiveness of the LSRC model, the experiments show the
results when the embedding size was fixed at 100, LSRC(100). The training used the BPTT
algorithm for 5 time steps. Similarly to short context models, the mini-batch was set to 200.
The learning rate, however, was set to 1.0 and the weight decay to 5 · 10−5. The use of mo-
mentum did not lead to any additional improvement. Moreover, the data were sequentially
without any sentence independence assumption. Thus, the recurrent models were still able
to capture long range dependencies that existed beyond the sentence boundary.

4.5. Experiments and results 37

Architecture model model+KN5 NoP
n− 1 = 1 2 4 1 2 4 4

KN 186 148 141 – – – –
KN+cache 168 134 129 – – – –

1 Hidden Layer
FNN 176 131 119 132 116 107 6.32M
FOFE 123 111 112 108 100 101 6.32M

Recurrent Models (1 Layer)
RNN 117 104 8M

LSTM (1L) 113 99 7M
LSRC(100) 109 96 6M
LSRC(200) 104 94 7M

2 Hidden Layers
FNN 176 129 114 132 114 102 6.96M
FOFE 116 108 109 104 98 97 6.96M

Deep Recurrent Models
D-LSTM (2L) 110 97 8M
D-RNN (3L) 108 – 6M
D-LSRC(100) 103 93 6M
D-LSRC(200) 102 92 7M

Table 4.2: Comparison of LSRC and other model perplexities (PPL) on the PTB test set.

Table 4.2 shows the perplexity evaluation on the PTB test set. To compare the model sizes,
it also reports the Number of Parameters (NoP) for each of the models. My coauthors and I
first observed that LSRC outperformed all other models for all configurations, in particular,
RNN and LSTM.This observation includes othermodels that were reported in the literature,
such as random forest LM (Xu and Jelinek, 2007), structured LM (Filimonov and Harper,
2009), and syntactic neural network LM (Emami and Jelinek, 2004). More particularly, my
coauthors and I concluded that LSRC, with an embedding size of 100, achieved a better
performance than all other models while reducing the number of parameters by≈ 29% and
≈ 17% compared to RNN and LSTM, respectively. Increasing the embedding size to 200,
which is used by the other models, significantly improved the performance with a resulting
NoP comparable to LSTM.A t-test confirmed the significance of the improvements obtained
over LSTM, which led to p-values ≤ 10−10.

The results of the deep models in Table 4.2 also show that adding a single non-recurrent
hidden layer to LSRC can substantially improve the performance. In fact, the additional
layer bridges the gap between the LSRC models with an embedding size of 100 and 200.
The resulting architectures outperform the other deep recurrent models with a substantial
reduction in the number of parameters (for the embedding size 100), and without dropout
regularization, Lp, and maxout units or gradient control techniques from D-RNN.

38 4. Language models can be optimized for cohesion

My coauthors and I concluded from these experiments that the explicit modeling of short
and long range dependencies using two separate hidden states improves the performance
while reducing the number of parameters.
In order to show the consistency of the LSRC improvement over the other recurrent mod-
els, Figure 4.4 illustrates the variation of the models performance with respect to the hid-
den layer size. This figure shows that increasing the LSTM or RNN hidden layer size could
not achieve a similar performance to the one obtained using LSRC with a small layer size
(e.g. 300). It is also worth mentioning that this observation holds when comparing a 2-
recurrent layers LSTM to LSRC with an additional non-recurrent layer.

Figure 4.4: Perplexity of neural LMs versus hidden layer size on PTB.

4.5.3 LTCB experiments

Our LTCB experiments used the same PTB setup with minor modifications and followed
exactly the same setup as Zhang et al. (2015). More precisely, these results were obtained
without use of momentum or weight decay (due to the long training time required for this
corpus), themini-batch size was set to 400, the learning rate was set to 0.4 and the BPTT step
was fixed at 5. The FNN and FOFE architectures use 2 hidden layers of size 600, whereas
RNN, LSTM and LSRC have a single hidden layer of size 600. Moreover, the word embed-
ding size was set to 200 for all models except RNN, which was set to 600.
The PTB and LTCB results clearly highlight the importance of recurrent models to capture
long range dependencies for LM tasks. The training of thesemodels, however, required large
amounts of data to outperform short contextmodels. This can be seen in the performance of
RNN and LSTM on both corpora. My coauthors and I concluded from these results that the
explicit modeling of long and short context in a multi-span model can lead to a substantial
improvement over state-of-the-art models.

4.6. Conclusion and synthesizing discussion 39

Architecture model NoP
n− 1 = 1 2 4 4

KN 239 156 132 –
KN+cache 188 127 109 –
FNN [M*200]-600-600 235 150 114 65M
FOFE [M*200]-600-600 112 107 100 65M
RNN [600]-R600 85 96M
LSTM [200]-R600 66 66M
LSTM [200]-R600-R600 61 69M
LSRC [200]-R600 63 66M
LSRC [200]-R600-600 59 66M

Table 4.3: Comparison of LSRC and other model perplexities (PPL) on the LTCB test set.

Table 4.3 reports results for an LSTM with 2 recurrent layers as well as for LSRC with an
additional non-recurrent layer. The recurrent layers are marked with an “R”.
The results shown in Table 4.3 generally confirm the conclusions drawn from the PTB ex-
periments above. In particular, the proposed LSRC model largely outperformed all other
models. In particular, LSRC clearly outperformed LSTM with a negligible increase in the
number of parameters (resulting from the additional 200 · 200 = 0.04M local connection
weights U c

l) for the single layer results. This improvement was maintained for deep models
(2 hidden layers), where the LSRC model achieved a slightly better performance while re-
ducing the number of parameters by ≈ 2.5M and speeding up the training time by ≈ 20%
compared to deep LSTM.

4.6 Conclusion and synthesizing discussion

This chapter considers the importance and ability of standard neural networks to encode
long and short range dependencies for language modeling tasks. I argue that these mod-
els were not particularly designed to, explicitly and separately, capture these two sources
of linguistic information. LSRC was a good alternative solution, taking advantage of the
LSTM ability to capture long range dependencies and the RNN ability to encode a much
shorter range of context. In doing so, this network is able to encode the short and long
range linguistic dependencies using two separate network states that evolve in time. In ex-
periments conducted on PTB and LTCB, LSRCmodels substantially outperformed different
state-of-the-art neural network architectures, including LSTMandRNN, evenwhen smaller
architectures were used.

40 4. Language models can be optimized for cohesion

In work following the LSRC publication, I found experimentally that LSRC models consis-
tently outperformed LSTM models without dropout. But if dropout was included, perfor-
mance was comparable. It was interesting that an extra recurrent connection would have
such paradoxical purposes in relating the three novel architectures in this section. Namely,
recurrences were not present in CDLM, used for the long context in SRNNs, maintained the
short context in LSRC models, and seemed comparable to probabilistically deleting infor-
mation in a network without the extra recurrence. As such, it seemed ill-advised to invest
toomuch energy in arguing for one architecture over another except in quite specialized use
cases.
The most important limitation of this work is that perplexity experiments are not that use-
ful for making sweeping inferences about the qualities of language models. For a host of
reasons, a perplexity experiment never “proves” that one language model is better than an-
other. The foremost reason is that the outcome of the experiment is so largely dependent on
the training data, the testing data, hyperparameter settings, the choice of vocabulary, and
further decisions that the experimenter makes such as when to stop training. Indeed, with-
out spending perhaps an imprudent amount of time searching the hyperparameter space, it
is difficult to know when the language model is “good enough”. This problem has become
more of an issue in the years following my publications. Currently, language models are so
big that it is impractical to train them from scratch, so the hyperparameter space is not ex-
plored. Datasets are so large that scientists cannot know that much about what they contain,
leading some, notably Bender and Gebru et al. (2021), to argue that scientists should only
create corpora and language models “as large as can be sufficiently documented.”
That said, I can still make recommendations for when to use different language models,
provided that the standard of “proof ” is lower for recommendations. Especially with the
subsequent advent of transformer languagemodels, I would recommend LSTM and its close
variants (LSRC) mainly in the case that the data are too specialized or rare to support a
Transformer model. Then, if the resources are still not sufficient, a CDLM might work.
Given though that Transformer models tend to be in a different league in terms of model
quality, it did not seem as important to practice experimental methods of language model
evaluation, such as coreference resolution or batteries of subject verb agreement tests, on all
three novel architectures in this thesis. I chose to use only LSRC as this model is closest to
LSTMs, which enjoyed relative hegemony in the pre-Transformer era of language modeling
research.
But the story of the development of these three novel architectures is still interesting and
informs how long distance triggering patterns came to be commonly included in language
models. The three architectures built on each other in that CDLM had the minimal power
needed to capture long distance dependencies; SRNN added more power, achieved state of
the art, and provided a mechanism for semantically and syntactically oriented embeddings
from the same system; and LSRC developed to the point that there was actual data showing
that information such as triggering information was remaining in the network as intended.

Chapter 5

Language models can use spelling to
approximate the meanings of words

Byte-pair encoding (BPE), as formulated for compression by Gage (1994) and “popular-
ized…as a tokenization scheme” by Sennrich, Haddow, and Birch (2016), has become some-
what of a standard in tokenization for languagemodeling (Zouhar et al., 2023). It essentially
solves the problem of out-of-vocabulary tokens having undefined surprisal and allows the
system to use sub-word information. However, even this is perhaps more brittle than the
human capacity to handle novel words, since they can flexibly divide up words andmake as-
sociations as they see fit. Sub-word similarity-based search (SWordSS), whichmy coauthors
and I presented in Singh et al. (2016), aimed to sidestep at least the word division problem by
exploring overlapping sub-word units of a fixed size. Therefore, no specialized knowledge
of morphology was necessary. In my individual follow-up studies, I found, perhaps surpris-
ingly, that even in some cases that a representation of the entire word can be obtained, it
was better to use SWordSS on the word’s spelling to approximate the word’s meaning.

5.1 Introduction and background

Word embeddings have been successfully applied to many NLP tasks (Collobert and We-
ston, 2008; Collobert, 2011; Socher et al., 2011, 2012; Hermann and Blunsom, 2014; Ben-
gio and Heigold, 2014; Yang et al., 2015), and these systems often achieved state-of-the-art
performance. This success has been ascribed to embeddings’ ability to capture regularities
traditionally represented in core NLP features. Most of these embeddings were trained on
large amounts of data, allowing them to have good coverage of the relevant vocabularies.
However, embeddings often still cannot satisfactorily represent rare words, i.e. words with
few occurrences in training data.
To generate useful embeddings for words too rare for standardmethods, Luong, Socher, and

42 5. Language models can use spelling to approximate the meanings of words

Manning (2013) andBotha andBlunsom (2014) leveraged the segmentation tool, Morfessor
(Creutz and Lagus, 2005), while Cotterell, Schütze, and Eisner (2016) used morphological
lexica to generate rare-word embeddings. In general, these methods added resource-based
knowledge to their systems in order to form word vector representations, showing impres-
sive performance gains over methods which did not address the rare words problem.
In contrast, Soricut and Och (2015) applied an automatic method to induce morphological
rules and transformations as vectors in the same embedding space. More specifically, they
exploited automatically-learned prefix- and suffix-based rules using the frequency of such
transformations in the data and induced a morphological relationship-based word graph.
Then, they searched over this graph for rules that best infer the morphology of the rare
words. The embeddings were then estimated using these rare-word explaining rules. In this
method, creating and tuning this morphological graph could lead to a high initial cost.
To overcome this cost and still be able to automatically induce rare word representations,
my coauthors and I proposed a sub-word similarity-based search. This technique maps a
rare word to a set of its orthographically-similar words and combines the embeddings of
these similar words to generate the rare word’s representation. These generated embed-
dings can then be combined with existing word embeddings to be applied in various tasks.
The SWordSS method is distinctive in that it improves embeddings for rare words without
requiring additional knowledge, data, or expensive computation.
In Section 5.3, I evaluate SWordSS embeddings on word similarity tasks. For further eval-
uation, in Section 5.4, I describe how my coauthor injected SWordSS embeddings into a
language model and analyzed its perplexity on rare words over various corpora. In Sec-
tion 5.5, I take a more quantitative look at how common it is for words to be rare and what
proportion of words can be expected to see a benefit from this method. Finally, I summarize
the findings and draw connections to more recent approaches in Section 5.6.

5.2 Inducing Rare Word Embeddings

Rare words form a large part of a language’s vocabulary. Table 5.1 reports that large portions
of the vocabularies for several languages in Polyglot (Al-Rfou’, Perozzi, and Skiena, 2013) are
words that occurred once or not at all in training data. Further, it is widely known that in
English, roughly half of all tokens in a given corpus occur only once.

Language V RW #ENF Coverage (%)
German 36602 15715 13103 99.9
Tagalog 22492 10568 8407 98.1
Turkish 24840 13624 9555 99.0
Vietnamese 6423 1332 305 69.1

Table 5.1: Some statistics on corpora in several languages used for language modeling.

5.2. Inducing Rare Word Embeddings 43

In this chapter, I define that a word is rare if it occurs zero or one time in a training corpus.
Further, if it did not occur at all, it is considered out of vocabulary.
Increasing the size of the corpus generally does not reduce the proportion of rare words in
the vocabulary because the distribution of words is Zipfian (Zipf, 1936, 1949). That is, there
is an unavoidable long tail. Thus, it is essential to handle rare words properly to obtain good
performance.
In the context of word embeddings-related tasks, training good word embeddings can incur
huge computational costs (Al-Rfou’, Perozzi, and Skiena, 2013). So, the SWordSS approach
focuses on augmenting readily available embeddings sets rather than creating newones from
scratch. To increase the availability of resources for many languages, Al-Rfou’, Perozzi, and
Skiena (2013) released1 pre-trained word embeddings for more than 100 languages. These
pre-trained word embeddings, namely Polyglot, were constructed by applying the method
outlined in Bengio et al. (2009) on Wikipedia texts, which vary in size from millions of
tokens to a few billion tokens.
Among many available pre-trained word embeddings, Google released word2vec (Mikolov
et al., 2013) based embeddings2 trained on their English News dataset (about 100 billion
tokens). The experiments described in this chapter applied both of these embeddings sets
to jump start generating the rare word embeddings for different languages.
Statistics about the various language modeling corpora and word similarity tasks used in
the experiments are shown in Table 5.1 and Table 5.2. These tables report the vocabulary
size, number of rare words, and the number of words for which the embeddings were not
found (ENF = Embedding Not Found) in the pre-trained embedding sets. Formost corpora
and evaluation tasks, ENFs form a large share of the vocabulary. So, SWordSS produced the
embeddings for these words.

Dataset V #ENF Coverage (%)
Rare Word (Luong, Socher, and Manning, 2013) 2951 1073 100
Gur65 (Gurevych, 2005) 49 4 100
Rare Word + GoogleNews 2951 173 100

Table 5.2: Some statistics on word similarity datasets used in the experiments.

1https://sites.google.com/site/rmyeid/projects/polyglot
2https://code.google.com/archive/p/word2vec/

https://sites.google.com/site/rmyeid/projects/polyglot
https://code.google.com/archive/p/word2vec/

44 5. Language models can use spelling to approximate the meanings of words

For a given set of pre-trained embeddings with a finite vocabulary VE applied to a task with
vocabulary VT and a finite set of given rare wordsRW = {w | w /∈ VE∧w ∈ VT}, SWordSS
applies the following steps:
Step 1: Map every word w ∈ VT to its sub-word features.
Although a word may be rare, substrings of that word are, in general, less rare. Hence, the
process starts by breaking down each word w ∈ V into its constituent N-sized sub-word
units: DN(w). For example, given the sub-word size N = 3,

DN(language) = {lan, ang, ngu, gua, uag, age}

In this chapter’s experiments, N was set to 3. However, it remains to be seen how using
differently sized sub-word units or evenmorphemes affects the performance of this method.
Note that this procedure does not formally require that sub-word units be of equal length, so
linguistically-sensible morphemes may be used if the resource is available for that language.
Step 2: Index w ∈ VT using its sub-word features.
Pre-trained sets of embeddings can have large coverage at the outset (for example, Polyglot
has 100K words in its vocabulary). So, performing substring searches and comparisons can
become quite computationally expensive. To speed up the search for sub-word units, my
coauthor created an inverted index on words. For each w ∈ V , DN(w) was treated as a
document and fed into a search engine based indexer. Lucene3 (McCandless, Hatcher, and
Gospodnetic, 2010) was used to index the words.
Step 3: Search the index for matches of w′ ∈ RW .
Next, SWordSS breaks down the rare word w′ ∈ RW into its sub-word units (DN(w

′)) and
searches forDN(w

′) on the index. The program returns the topK = 10 results, denoted by
RK(w′). This contains words having similar sub-word units as w′, hence, containing words
which are sub-word similar to w′.
Step 4: For every w′ ∈ RW , combine matched embeddings to generate its embedding.
To compute the SWordSS embedding of w′ ∈ RW , the system computes the weighted av-
erage of embeddings (v) of the rare-word matches. A string similarity function S provides
the weights such that

vw′ =
∑

w:DN (w)∈RK(w′)

S(w′, w) · vw

The above method particularly hinges on the third step, which uses sub-word similarity of
sub-word similar words to search for rare word alternatives, leading to the embedding com-
bination in the fourth step. Hence, my coauthor named the technique Sub-Word Similarity
based Search (SWordSS: pronounced swordz). The SWordSS embeddings ({vw′ : w′ ∈
RW}) are used along with {vw : w ∈ VE} to perform rare word-related tasks.

3https://lucene.apache.org/

https://lucene.apache.org/

5.2. Inducing Rare Word Embeddings 45

For the fourth step, my coauthor and I both independent tried different string similarity
functions (S), described in the list below, to average different embeddings of matches from
the third step. These different similarity functions helped to provide amoremorphologically-
sensible scoring of matches and eventually set the weights for computing the final rare word
embeddings.

Jaccard Index Jaccard (1912) computes the size of the character intersection over the size
of the character union. Therefore, order of characters is not considered by this metric. Fre-
quent characters such as vowels lead to uninteresting intersections, and short words could
possibly suffer from an unfair floor.

Jaro Similarity Jaro (1989) considers the number ofmatching characters in corresponding
positions and the number of transpositions detected. So, order of characters does matter for
this metric. Insertions and deletions are treated similarly, and the frequency and length
effects from Jaccard could also affect this metric.

Jaro-Winkler Similarity Winkler (1990) developed a variation on Jaro similarity andquite
importantly, this metric deems two strings more similar if a short prefix (at the beginning
of the strings) appears on both strings. This is especially relevant for this work because it
benefits precisely the case in which two strings differ only in an inflectional suffix.

Most Frequent K Characters Similarity Seker et al. (2014) consider the counts of the
top K characters in each string. Thus, if the “root morphemes” are long enough to create
nontrivial count statistics, this metric may, too, favor a more linguistic similarity, but as
before, shorter strings could have unwanted effects.

SubsequenceKernels Lodhi et al. (2002) create automatically-generated features based on
sequences of characters within the strings to be compared. Therefore, those sequences that
do not crossmorpheme boundaries could be especially helpful for estimatingmorphological
similarity.

Tversky Coefficient Tversky (1977) breaks down the union in the Jaccard Index, allowing
different weights for the denominator intersection, those characters that only appear in the
first string, and those characters that only appear in the second string. Thesemetaparameters
allow the metric some flexibility that the others do not have.

In experiments on rare word-related tasks, my coauthor and I mostly observed that using
SWordSS leads to high coverage rates, also presented in Table 5.2 and Table 5.1. Whenever
words w′ resulted in zero matches, I removed them from the word similarity tasks and my
coauthor substituted in random vectors for the language modeling tasks.

46 5. Language models can use spelling to approximate the meanings of words

5.3 Correlations with human word similarity scores

Datasets I evaluated SWordSS embeddings on two word similarity tasks. The evaluation
metric is the correlation between the human ratings of word pairs and the scores generated
using embeddings. A good set of embeddings should yield a high correlation.
Specifically, I evaluated SWordSS embeddings on Luong, Socher, and Manning (2013)’s En-
glish Rare Words dataset with 2034 word pairs (Luong2034) and also evaluated these em-
beddings on a German word similarity task (Gurevych, 2005; Zesch and Gurevych, 2006)
with 65 word pairs (Gur65).

Experimental Setup For the German word similarity task, I used only Polyglot word em-
beddings, which have 64 dimensions. For English, along with Polyglot word embeddings, I
used the GoogleNews word2vec embeddings, which are 300-dimensional vectors.
As a baseline, I used the existing pre-trained word embeddings, which are compared to their
augmented SWordSS versions. While augmenting with the pre-trained sets the SWordSS
embeddings, I also explored the string similarity functions given in the previous section.
To evaluate the effect of these string similarity functions, I also implemented a constant
similarity function (S(w,w′) = 1, where w and w′ are words), denoting the corresponding
embeddings by SWordSS1. Finally, I also compared the SWordSS embeddings to SO2015
(Soricut and Och, 2015), which also applied morphological analysis to generate missing
word embeddings in a way quite similar to that of SWordSS.

Word Vectors Gur65
Polyglot 28.5
Polyglot+SWordSSji 37.5
Polyglot+SWordSSjaro 37.1
Polyglot+SWordSSjw 37.0
Polyglot+SWordSSmfk 37.2
Polyglot+SWordSSssk 36.9
Polyglot+SWordSStc 37.6
Polyglot+SWordSS1 35.8

Table 5.3: Spearman ρ×100with human ratings on a Germanword similarity task (Gur65)
for SWordSS embeddings using various string similarity functions.

Results Using SWordSS embeddings definitely increased the correlation with humans in
comparison to the original on the Gur65 task (shown in Table 5.3), though all the different
string similarity functions except the constant function (SWordSS1) led to correlations in a
very close range, showing that particularly for German, different similarity functions behave
very similarly. So, I only report the best correlation after applying these functions.

5.3. Correlations with human word similarity scores 47

Task Luong2034
Word Vectors Polyglot GoogleNews
SO2015 w/o Morph - 44.7
SO2015 w/ Morph - 52.0
w/o SWordSS 9.7 45.3
w/ SWordSS1 28.9 51.3
w/ SWordSSsim 30.4 51.4

Table 5.4: Spearman ρ×100 evaluation of techniques with and without morphological fea-
tures used to generate representations for the word similarity task.

Next, I compared SWordSS versions of Polyglot embeddings and GoogleNews embeddings
on the Luong2034 task. When the SWordSS versions were compared to the original (labelled
w/o SWordSS) it led to a higher correlation, as shown in Table 5.4. However, for each set
of embeddings, the difference between SWordSS1 and SWordSSsim remained small. The
correlations for the SWordSS version of Polyglot were still lower than the correlation rates
reported by SO2015. This was due to the difference in initial quality of embeddings used by
each method. As Polyglot embeddings trained on a lesser amount of data than SO2015, they
were easily outperformed.
Also in Table 5.4, I show the result of substituting Polyglot embeddings with GoogleNews
embeddings. Using these embeddings, which were trained on a larger dataset than used by
Polyglot, led to SWordSS versions having comparable results with SO2015 for the Luong2034
task.
Overall, the SWordSS technique was able to improve pre-trained embeddings’ performance
on the above word similarity tasks quite drastically. Even though SWordSS-augmented
GoogleNews embeddings did not significantly outperform SO2015, this method provides
a simpler sub-word search based alternative to the graph search over morphological rela-
tionships performed by SO2015. Furthermore, by applying sub-word search in the third
step from Section 5.2, SWordSS overcomes the need for creating and tuning the graph of
morphological relationships as required by SO2015.

48 5. Language models can use spelling to approximate the meanings of words

5.4 Perplexity Experiments

Training language models (LMs) using an expanded vocabulary (having more word types
than contained in the training corpus) requires assigning probabilities to words which are
not present in the training set. Traditionally, these rare words are assigned a default value of
probability in conventional n-gram and long short term memory (LSTM)-based reccurrent
neural network LMs (Sundermeyer, Schlüter, and Ney, 2012). This is usually not beneficial
for spoken termdetection and automatic speech recognition systemsmade for low resourced
languages, since presence of rare words in speech queries is high (Logan et al., 1996; Logan,
Van Thong, and Moreno, 2005).
To avoid thismisrepresentation of rare words, my coauthor applied SWordSS embeddings in
a language modeling framework. Specifically, he used a log-bilinear language model (LBL)
(Mnih andHinton, 2007). In the experiments, when the SWordSS embeddings were used to
initialize an LSTM’s input layer, the system obtained the same perplexity values as the LSTM
initialized with random embeddings. This observation suggests that the LBL framework
is better suited than LSTMs for this naive way of initializing neural language models with
SWordSS embeddings and improving perplexity on rare words.
LBL predicts the next word vector p ∈ Rd, given a context of n− 1 words, as a transformed
sum of context word vectors qj ∈ Rd, as:

p =
n−1∑
j=1

qjCj

whereCj ∈ Rd×d are position-specific transformationmatrices. p is comparedwith the next
wordw’s representation rw. This comparison is performed using the vector dot product and
then is used in a softmax function to obtain the probability of the next word as follows:

p(wi|wi−1
i−n+1) =

exp(p · rw + bw)∑
v∈V exp(p · rv + bv)

where b is the bias term encoding the prior probability of word type w.
First,Q, the collection of context word vectors qj , andR, the collection of next word repre-
sentations (rw), are initialized with the pre-trained word embeddings. Thereafter, my coau-
thor trained the LBL using stochastic gradient descent.
Previously, extensions to class-based and factor-based formulations have provided impres-
sive improvements over regular n-gram LMs formorphological languages (Botha and Blun-
som, 2014). But, these LMs do not provide straightforward ways of incorporating pre-
trained word embeddings, so my coauthor used the original LBL because of the ease with
which it incorporates pre-trained embeddings in its formulation.

5.4. Perplexity Experiments 49

Data To evaluate SWordSS embeddings on languagemodeling, my coauthor used theGer-
man section of EUROPARL as processed by Botha and Blunsom (2014). He also performed
experiments on Tagalog (tl), Turkish (tr) and Vietnamese (vi) corpora, which include tran-
scriptions of phone conversations collected under the IARPA Babel Program language col-
lection releases babel106b-v0.2f, babel105-v0.5, and babel107b-v0.7 respectively.
TheGerman corpus was processed to have no out-of-vocabulary words (OOVs), however, it
still had a lot of low frequency words (see Table 5.1). Contrastingly, the Babel corpora have
OOVs as well as other low frequency words.
The Babel corpora were provided with training and development sets. My coauthor divided
the existing development set into two halves to use one as the test set and the other half as
the new development set. The statistics on these corpora are summarized in Table 5.5.

Statistics de tl tr vi
Train 1000K 585K 239K 985K
Dev 74K 30K 5K 65K
Test 73K 31K 6K 60K
Voc Size 37K 22K 25K 6K

Table 5.5: Statistical summary of corpora used for the language modeling experiments.

Table 5.1 andTable 5.2 showed that even though a lot of rare-word embeddings weremissing
from the pre-trained set, SWordSS was able to generate and obtain high coverage rates for
such words, giving this method added benefit in the context of rare words.

Experimental Setup Before evaluating the SWordSS embeddings for predicting rarewords,
my coauthor used all the OOVs to expand the corresponding vocabulary. SWordSS embed-
dings for all the words in the expanded vocabulary were used to initialize LBL framework as
described in Section 5.4. A bigram version of this LBL (LBL2SWordSS) was further trained
on language corpora before being evaluated.
My coauthor compared the LBL2SWordSS model with the conventional modified Kneser-
Ney 5-gramLM (KN5) (Kneser andNey, 1995; Chen andGoodman, 1996) and also with the
bigram (LBL2) based log-bilinear LM.As amore powerful baseline, he also trained an LSTM
based RNN LM to compare with LBL2SWordSS . Moreover, my coauthor and I compared
the LBL2SWordSS , with a character-aware LM (Kim et al., 2016), denoted as CCNN-LSTM.
The CCNN-LSTMs were chosen for comparison because of their ability to use character-
based features to implicitly handle OOVs and rare words. For training each of these LMs,
my coauthor used the expanded vocabulary as used by LBL2SWordSS . In training neural
network-based language models, he restricted the number of parameters to have a similar
number of parameters as LBL2SWordSS .

50 5. Language models can use spelling to approximate the meanings of words

Language Model German Tagalog Turkish Vietnamese
PPL RW1PPL PPL RW1PPL PPL RW1PPL PPL RW1PPL

KN5 364.2 559K 162.6 420K 478.9 139K 120.8 174K
LBL2 391.1 404K 171.4 204K 649 94K 137.6 100K
LSTM 323.1 596K 134.7 343K 489.8 110K 102.1 457K
CCNN-LSTM 315.7 636K 117.4 354K 408.7 168K 182.7 516K
LBL2SWordSS 369.4 260K 167.2 167K 513.2 110K 136.4 143K
NoP 4.7 M 2.9 M 3.2 M 0.8 M

Table 5.6: Perplexities on test set (PPL), RW1 perplexities (RW1PPL) in thousands and
number of parameters (NoP) for LBL and LSTM LMs in millions, presented on
four corpora.

General Perplexity Results This section compares the language models described above
using perplexity values calculated on test sets of different languages, shown in Table 5.6.
As shown in Table 5.6, LBL2SWordSS was able to outperform the conventional LBL2 com-
fortably on all the corpora except Vietnamese. For Vietnamese, LBL2SWordSS and LBL2
performed comparably. Due to SWordSS’ low coverage of Vietnamese vocabulary, initial-
izing LBL2 with SWordSS embeddings led to only a marginal performance gain.
Overall in terms of test set perplexity, CCNN-LSTM outperformed LBL2SWordSS comfort-
ably on most language corpora. However, on Vietnamese (in which characters represent
meaning units rather than sounds) CCNN-LSTM suffered and the LSTM outperformed the
other language models. In comparison to LSTM and CCNN-LSTM, LBL2SWordSS ’s lower
performance on test data was expected as the former are more non-linearly complex lan-
guage models.
However, for tasks like spoken term detection, having low perplexities on the most frequent
words is not good enough, and hence, my coauthor and I compared LMs on the perplexity of
a rare-word based test set. To perform this comparison, my coauthor computed perplexity
only on rare words (RW1PPL), i.e. with training set frequency of one, present in the test
set. Table 5.6 shows that LBL2SWordSS performed better than the LSTM-based LMs across
various languages in terms of RW1PPL.
The CCNN-LSTM model could not include SWordSS embeddings easily. Hence, they were
not directly comparable to LBL2SWordSS , as the latter had more information at its disposal.

5.4. Perplexity Experiments 51

OOV and Rare Word Perplexity Results To further compare the performance of the
aforementioned language models on rare words, my coauthor and I analyzed perplexities
of such words (RWPPL) in the test set as a variation of the frequency classes of these words
in the training set. This variation is displayed in Figure 5.1.
For OOVs (rare words with zero training set frequency), LBL2SWordSS outperformed the
other languagemodels built with similar number of parameters, on the Tagalog and Turkish
corpora. In these cases, LBL2SWordSS reduced rare-word perplexities by a factor of two over
the character-feature rich CCNN-LSTM, which implicitly handles rare words by design.

Figure 5.1: Variation of rare-word perplexity versus threshold on frequency of training-set
words on German, Tagalog, Turkish and Vietnamese corpora

Even for rare words with training set frequency up to one, LBL2SWordSS reduced perplexity
up to a factor of 2.5 times with respect to CCNN-LSTM, on the German, Tagalog and Turk-
ish corpora. Interestingly, on these particular language corpora, Figure 5.1 shows that LBL
also performed better than both the LSTM-based LMs in modeling OOV and rare words of
frequency up to ten.
For Vietnamese, LBL alone was able to improve OOV and RW1 words over the other LMs.
Adding SWordSS embeddings harmed the prediction of OOV and RW1words. There could
have been interference from improper representation of tones.
These perplexity improvements started towanewhen higher frequencywordswere included
into the rare word set, across the different languages. Nevertheless, for languages with rich
morphology, initializing LBLwith SWordSS embeddings reduced perplexities on rarewords.

52 5. Language models can use spelling to approximate the meanings of words

5.5 Long tail analysis

Word embeddings use large amounts of training data to capture regularities that make their
inclusion in NLP systems worthwhile. Finding useful representations for rare words is a big
problem and my coauthor and I showed that SWordSS can help, but other words also may
not be well-served by standard embedding approaches. In this follow-up study, I ask and
answer two questions: 1) What is the frequency distribution for words in common word
similarity tasks, i.e. how long is the tail? and 2) When does the orthographically aware tool
SWordSS (Singh et al., 2016) produce better embeddings than word2vec (Mikolov et al.,
2013)?

5.5.1 What’s in the tail?

As described, the SWordSS method estimates an embedding using the non-impoverished
embeddings of the word’s non-rare orthographic neighbors. Since words in the head of
the distribution have enough data, I hypothesize that for these words, information on the
neighbors is less useful than information on the exact target. But for words in the long tail,
the neighbors are the key to a high quality meaning representation.
Therefore, in the first set of experiments, I investigate a reasonable, task-specific boundary
between the head and the tail, i.e. when does a word count as rare? To begin, consider the
vocabulary distributions in Figure 5.2.

Figure 5.2: Corpus and word similarity test set vocabularies broken down by number of
occurrences in the text8 corpus.

The distribution on the left is derived from the text8 corpus, which is the first 100MB of an
EnglishWikipedia dump (Mahoney, 2011). I reproduce the common trend that roughly half
of the words in this corpus occur only once. And for this corpus, only a quarter of the words
in the vocabulary occur five times or more. The middle distribution are the words from the

5.5. Long tail analysis 53

ws353 word similarity task (Finkelstein et al., 2002). Note that almost all of the words in
the dataset are all relatively frequent, which is rather unnatural. The Luong, Socher, and
Manning (2013) word similarity dataset in the righthand distribution was designed to have
rare words and thus much more closely captures the “natural” distribution on the left.

5.5.2 When does SWordSS help?

By default, word2vec does not generate embeddings for words occurring fewer than five
times. But, I varied this minimum and trained standard word2vec embeddings on the text8
corpus. The resulting correlations with human judgements on the Luong, Socher, and Man-
ning (2013) dataset are shown in the blue curve in Figure 5.3.

Figure 5.3: Spearman ρ × 100 on the Luong, Socher, and Manning (2013) similarity task
versus the minimum occurrences included during word2vec training.

The blue curve in Figure 5.3 was the resultant correlations with human judgements while
varying only theminimumnumber of occurrences in the corpus for inclusion in theword2vec
model. No SWordSS embeddings were used, sowordswithout word2vec embeddings could
not be scored. So, the correlation decreased as more and more pairs could not be compared
against the human judgements. The green curve in Figure 5.3 used the same five word2vec
models as the blue curve, but all words below the varied minimum occurrence threshold
received SWordSS embeddings. This marked improvement showed a clear benefit of using
SWordSS for rare words. The red curve in Figure 5.3 also used the same five word2vec mod-
els from the blue curve. However, this time, all words occurring fewer than five times re-
ceived SWordSS embeddings, even if they were above the threshold of the word2vec model
for that configuration. From the nominally better performance in the red curve over the
green curve, I show that word2vec embeddings can be harmful for rare words. That is, just
because the toolkit provided an embedding does not mean that the embedding is useful.

54 5. Language models can use spelling to approximate the meanings of words

5.6 Conclusion

In this chapter, I introduced SWordSS, a novel sub-word similarity based search for gener-
ating rare word embeddings. It leverages the sub-word similarity to search for closematches
of a rare word, and then combines their embeddings to make the rare word’s embedding.
Even though SWordSS is an unsupervised approach like Soricut and Och (2015), it differs
from the latter in the way it utilizes morphological information. Soricut and Och (2015)
automatically induces morphological rules and transformations to build a morphological
word graph. This graph is then tuned and used to induce embedding of a rare word. By
contrast, SWordSS simply indexes by sub-word units of a fixed length. So, it only uses flat
orthography rather than any specific morphological structure.
To test the SWordSS technique, I augmented pre-trained embeddings and then evaluated
them on word similarity tasks. The augmented embeddings outperformed the initial set
of embeddings drastically. However, it lagged behind the state-of-the-art performance of
Soricut andOch (2015). But, by employing embeddings trained on larger corpora, SWordSS
was able to perform comparably on a rare-word task.
My coauthor also investigated the effects of using SWordSS augmented embeddings for
modeling rare words. To perform this experiment, he trained LBLSWordSS LM and com-
pared it with language models like the character aware LM, an LSTM-based RNN LM re-
stricted to similar size. On almost all datasets, the character aware LM outperformed the
other LMs with respect to perplexity on complete test sets. But on rare words, SWordSS
showed up to 50% reduced perplexity values in comparison to other LMs. Hence, SWordSS
embeddings contributed substantially in modeling rare-word tasks.
My follow-up study found that for words occurring fewer than five times, i.e. words in
the long tail, a SWordSS embedding, which combines embeddings of the orthographically-
similar words, leads to a better meaning representation than a plain word2vec embedding.
The publication and follow-up study received substantial interest when I presented them,
especially when I advertized that the technique requires no additional data, knowledge, or
training. I discovered one important severe limitation in that Vietnamese is a tonal language
and the tones may not have been encoded properly for these experiments. So, the tones may
have contributed towhy theVietnamese data did not look like the data fromother languages.
Fasttext (Bojanowski et al., 2017) came about around the same time as SWordSS. I attribute
its greater success than SWordSS at least partially to the better availability of code. I have not
explicitly compared SWordSS, fasttext, and more modern approaches that train directly on
sub-word information. However, I concede that training directly was the correct technique
to persist in the field because SWordSS could bottleneck on its own objective. But the point is
that both humans and language models are good at leveraging sub-word information, albeit
in different ways.

Chapter 6

Some linguistic patterns that language
models failed to capture

So far in this thesis, I have demonstrated many kinds of knowledge that language models
are good at encoding, especially long distance dependencies and sub-word information. To
finish this first part, I present a striking case study in which seemingly simple features were
not captured, so rules based on the features outperformed the language model on a text
classification task. While my coauthors in Wiegand et al. (2018) developed and tested these
features without me, a thorough discussion of them is quite relevant for the thesis because
this may be the kind of information that language models could continue to miss.

6.1 Introduction
thelawdictionary.org defines abusive or offensive language as “hurtful, derogatory or
obscene utterances made by one person to another person”. Closely related terms include
hate speech (Waseem andHovy, 2016) or cyber bullying (Zhong et al., 2016). Several research
efforts just focus on utterances addressed towards minorities, but various specifications are
all compatible with that general definition for abusive language. Consider (1), (2), and (3)1.

(1) stop editing this, you dumbass.

(2) Just want to slap the stupid out of these bimbos!!!

(3) Go lick a pig you arab muslim piece of scum.

Due to the rise of user-generated web content, in particular on social media networks, the
amount of abusive language is also steadily growing. NLP methods are required to focus
human review efforts towards the most relevant microposts.

1The examples in this work are included to illustrate the severity of abusive language. They are taken from
actual web data and in no way reflect the opinion of the authors.

https://thelawdictionary.org/

56 6. Some linguistic patterns that language models failed to capture

This work addresses the task of detecting abusive words (e.g. dumbass, bimbo, scum). The
main assumption is that abusive words form a subset of negative polar expressions. The clas-
sification task is to filter the abusive words from a given set of negative polar expressions.
Using a base lexicon that is a small subset of negative polar expressions where the abusive
words among them have been marked via crowdsourcing (Section 6.3), my coauthors cali-
brated a supervised classifier by examining various novel features (Section 6.4). A classifier
trained on that base lexicon, which contains 551 abusive words, was then applied to a very
large list of unlabeled negative polar expressions (fromWiktionary2) to extract an expanded
lexicon of 2989 abusive words (Section 6.5).
The new lexicon was evaluated on the novel task of cross-domain classification of abusive
documents (Section 6.6) where it was used as a high-level feature. In this work, microp-
osts were considered documents. While for in-domain classification, supervised classifiers
trained on generic features, such as bag of words or word embeddings, usually score very
well, on cross-domain classification they perform poorly since they latch on to domain-
specific information. In subjectivity, polarity and emotion classification, high-level features
based on predictive domain-independent word lists have been proposed to bridge the do-
mainmismatch (Dias, Lambov, andNoncheva, 2009;Mohammad, 2012;Wiegand, Klenner,
and Klakow, 2013).
New abusive words constantly enter natural language. For example, according to Wik-
tionary2 the word gimboid, which refers to an incompetent person, was coined in the British
television series Red Dwarf, possibly from the word gimp and the suffix -oid. According to
Urban Dictionary3, the word twunt, which is a portmanteau of the swearwords twat and
cunt, has been invented by humourist Chris Morris for the Channel 4 series ‘Jam’ in 2000.
One of the most recent abusive words is remoaner which describes someone who complains
about or rejects the outcome of the 2016 EU referendum on the United Kingdom’s mem-
bership of the European Union. It is a blend of moan and remainer. Wiktionary states that
this word has a pejorative connotation.
These examples show that the task of creating a lexicon of abusive words cannot be reduced
to a one-timemanual annotation effort. Recent web corpora and crowdsourced dictionaries
(e.g. Wiktionary) should be ideal resources to find evidence of such words.
My coauthors’ contributionswere presenting the first work that systematically describes the
automatic construction of a lexicon of abusive words and examining novel features derived
from various textual resources. I trained a language model on a large dataset with labeled
microposts, andmy coauthors and I showed that the information derived from the novel fea-
tures cannot be equally derived from the language model. The effectiveness of the expanded
lexicon is demonstrated on cross-domain detection of abusive microposts. This was also the
first work to address this task in general. The supplementarymaterial to the published paper
(Wiegand et al., 2018)4 includes all resources newly created from the research.

2https://en.wiktionary.org
3https://www.urbandictionary.com
4https://github.com/uds-lsv/lexicon-of-abusive-words

https://en.wiktionary.org
https://www.urbandictionary.com
https://github.com/uds-lsv/lexicon-of-abusive-words

6.2. Related Work 57

The task is framed as a binary classification problem. Each given expression is to be classi-
fied as either abusive or not. While my coauthors and I used English data, many of the novel
features should also be applicable to other languages.

6.2 Related Work

Lexical knowledge for the detection of abusive language has only received little attention in
previous work. Most approaches consider it as one feature among many. Very often existing
word lists from theweb are employed (Xiang et al., 2012; Burnap andWilliams, 2015;Nobata
et al., 2016). Their limited effectivenessmay be due to the fact that they were not built for the
task of abusive language detection. Only the manually-compiled lexicon from Razavi et al.
(2010) and the lexicon of hate verbs from Gitari et al. (2015) have been compiled for this
specific task. Since the latter lexicon is not publicly available, only the formerwas considered
in this work. In both publications, very little is said on the creation of these resources.
Previous work focused on in-domain classification, a setting where generic features (e.g. bag
of words) work well and word lists are less important. There have been investigations exam-
ining features on various datasets (Nobata et al., 2016; Safi Samghabadi et al., 2017). How-
ever, these studies always trained and tested on the same domain. This work shows that a
lexicon-based approach is effective in cross-domain classification.
Schmidt and Wiegand (2017) gives a more detailed overview on previous work on the de-
tection of abusive language in general.

6.3 Data

Base Lexicon The base lexicon exclusively comprises negative polar expressions. It is a
small set annotated via crowdsourcing. Abusivewordswere considered to be a proper subset
of negative polar expressions. By just focusing on these types of words, my coauthors were
more likely to obtain a significant amount of abusive words than just considering a sample
of arbitrary words. This lexicon will be used as a gold standard for calibrating features of a
classifier. That classifier will be run on a large set of unlabeled negative polar expressions to
produce the expanded lexicon (Section 6.5).
My coauthors sampled 500 negative nouns, verbs and adjectives each from the Subjectivity
Lexicon (Wilson,Wiebe, andHoffmann, 2005). This lexiconwas chosen sincemy coauthors
had extra information available for its entries that were of interest, namely polar intensity
(Section 6.4.1) and sentiment views (Section 6.4.2). However, since the Subjectivity Lex-
icon misses some prototypical abusive words (e.g. nigger, slut, cunt), my coauthors added
another 10% (i.e. 150 words) which are abusive words frequently occurring in the word lists
mentioned in Schmidt and Wiegand (2017).

58 6. Some linguistic patterns that language models failed to capture

Each of the negative polar expressions was judged by 5 annotators from the crowdsourc-
ing platform ProlificAcademic.5 Each annotator had to be a native speaker of English and
possess a task approval rate of at least 90%. For the base lexicon (Table 6.1), the task was a
binary word categorization: abusive or non-abusive. A word was only classified abusive if at
least 4 out of the 5 raters judged the word to be abusive. This threshold should prevent many
ambiguous words from being classified as abusive, a general problem of existing resources
(Davidson et al., 2017).

adjective noun verb all
class freq % freq % freq % freq %

abusive 170 33.8 291 45.3 90 17.8 551 33.4
not abusive 332 66.2 352 54.7 415 82.2 1099 66.6

Table 6.1: The base lexicon: 1650 entries in total of which 551 are abusive.

Corpora The experiments employed three unlabeled corpora (Table 6.2). The two larger
corpora, the Amazon Review Corpus – AMZ (Jindal and Liu, 2008) and the Web As Corpus
– WAC (Baroni et al., 2009), are used for inducing word embeddings (Section 6.4.7). AMZ
and the smallest corpus, rateitall.com – RIA6, are used for computing polar word intensity
(Section 6.4.1) from star ratings.

corpus tokens properties good for computation of
RIA 4.7M reviews focused on persons polar intensity (Section 6.4.1)

AMZ 1.2B product review corpus polar intensity (Section 6.4.1) /
word embeddings (Section 6.4.7)

WAC 2.3B large general web corpus word embeddings (Section 6.4.7)

Table 6.2: Information about unlabeled corpora used.

6.4 Feature Calibration
In this section, I describe the novel linguistic features and also word embeddings derived
from a language model that failed to capture them. My coauthors also developed some
competitive baselines for the base lexicon. The classifier was support vector machines as
implemented in SVMlight (Joachims, 1999). This classifier was chosen since it is most com-
monly used for the detection of abusive language (Schmidt and Wiegand, 2017). For all
classifiers in this paper, the supplementary material4 contains information regarding (hy-
per)parameter settings.

5The supplementary material4 contains more information regarding the annotation set-up (including
guidelines).

6This is a crawl from the review website https://www.rateitall.com.

https://www.rateitall.com

6.4. Feature Calibration 59

6.4.1 Polar Intensity (INT)

Intuitively, abusive language should coincide with high polar intensity. My coauthors in-
spected 3 different types.

Binary Intensity (INTbin) The first feature is a simple binary intensity feature obtained
from the Subjectivity Lexicon. In that resource, each entry is categorized as either a weak
polar expression (e.g. dirty) or a strong polar expression (e.g. filthy). Table 6.3 (left half),
which shows the distribution of intensity on the intersection of the base lexicon and the Sub-
jectivity Lexicon, confirms that abusive words are rarely weak polar expressions and more
frequently strong polar expressions.

intensity (Section 6.4.1) views (Section 6.4.2)
class all weak strong actor speaker

abusive 26.7 14.1 32.0 9.7 32.8
not abusive 73.3 85.9 68.0 90.3 67.2

Table 6.3: Percentage of abusive / not abusive instances among (binary) intensity and views.
All numbers only refer to the subset of the base lexicon (Table 6.1) taken from the
Subjectivity Lexicon (i.e. 1500 entries).

Fine-grained Intensity (INTfine) My coauthors also investigated a more fine-grained fea-
ture which assigns a real-valued intensity score to polar expressions. It is computed by lever-
aging the star-rating assigned to the reviews comprising the AMZ corpus (Table 6.2), a large
publicly available review corpus. A review is awarded between 1 and 5 stars where 1 is the
most negative score. The system infers the polar intensity of a word by the distribution of
star-ratings associated with the reviews in which it occurs. Negative polar expressions with
a very high polar intensity were assumed to occur more often in reviews assigned few stars
(i.e. 1 or 2). Ruppenhofer, Wiegand, and Brandes (2014) established that the most effective
method to derive such polar intensity is by ranking words by their weighted mean of star
ratings (Rill et al., 2012). All words of the base lexicon were ranked according to that score,
and then the ranks were used as a feature.

Intensity Directed towards Persons (INTperson) Not all negative polar expressions with
a high intensity are equally likely to be abusive. The high intensity expressions should also
be words typically directed towards persons. Most polar statements in AMZ, however, are
directed towards a movie, book or some electronic product. In order to extract negative
polar intensity directed towards persons, my coauthors used the RIA corpus (Table 6.2).
RIA contains reviews on arbitrary entities rather than just commercial products as in the
case of AMZ. Each review has a category label (e.g. computer, person, travel) that very easily
allows us to extract from RIA just those reviews that concern persons.

60 6. Some linguistic patterns that language models failed to capture

Table 6.4 compares a typical 1-star review from AMZ with one from RIA. The RIA review
was considered an abusive comment. It contains many words predictive of abusive language
(e.g. self-absorbed, loser, arrogant, and loud-mouthed).

AMZ on Halloween 5: this movie is horrible with a bad
plot a disappointment to the halloween series.

RIA on Bill Maher: Self-absorbed loser who tries to pretend
to be fair. He is rude, arrogant, loud-mouthed…

Table 6.4: 1-star reviews in different corpora.

6.4.2 Sentiment Views (VIEW)

Wiegand, Schulder, andRuppenhofer (2016) define sentiment views as the perspective of the
opinion holder of polar expressions. They distinguish between expressions conveying the
view of the implicit speaker of the utterance typically referred to as speaker views (e.g. cheat-
ing in (4); ugly and stinks in (5)), and expressions conveying the view of event participants
typically referred to as actor views (e.g. disappointed and horrified in (6); protested in (7)).
Wiegand, Schulder, and Ruppenhofer (2016) provided sentiment-view annotations for the
entries of the Subjectivity Lexicon.

(4) Peter is always cheatingspeaker view. (holder: speaker)

(5) Mary is an uglyspeaker view girl that stinksspeaker view. (holder: speaker)

(6) [Peter]holder was disappointedactor view and horrifiedactor view at the same time.

(7) [The public]holder protestedactor view against that law.

Sentiment views have been used for improving the extraction of opinion holders and targets
(Deng and Wiebe, 2016; Wiegand, Bocionek, and Ruppenhofer, 2016). This work shows
that they also have relevance for the detection of abusive words. Among actor-view words,
there is a much lower proportion of abusive words than among speaker-view words (right
half of Table 6.3). This can be explained by the fact that verbal abuse usually originates
from the speaker of an utterance rather than some other discourse entity. Sentiment-view
information was used as a binary feature.

6.4.3 Emotion Categories (NRC)

Mycoauthors also examinedwhether knowledge of emotion categories associatedwithwords
is helpful. Potentially negative emotions, such as disgust or anger, should correlate with
abusive words. My coauthors used the NRC lexicon (Mohammad and Turney, 2013) and
employed the categories associated with the words contained in that resource as a feature.

6.4. Feature Calibration 61

6.4.4 Patterns (PAT)

Noun Pattern (PATnoun) My coauthors identified that the noun pattern (8) can be used to
extract abusive nouns. Since this pattern is very sparse even on the largest corpus (i.e.WAC),
my coauthors also ran the pattern as a query on Twitter and extracted all matching tweets
coming in a period of 14 days. (This appeared to be a saturation point.)

(8) a. pattern: called {me|him|her} a(n) <noun>

b. pattern match example: He called me a bitch.

Table 6.5 compares the most frequent matches for that pattern. The pattern matched much
more frequently on Twitter than on WAC. The quality of the matches on Twitter was also
much better than on WAC, where there were still many false positives (e.g. name or saint).
My coauthors asserted that Tweets, in general, aremuchmore negative in tone than arbitrary
web documents (as represented by WAC) which could explain the fewer false positives on
Twitter. Note that the ranking from Twitter is not restricted to just prototypical abusive
words (as Table 6.5 might suggest). The entire ranking also contains many less common
words, such as weaboo, dudebro or butterface. The frequency ranks of the nouns extracted
from Twitter are used as a feature.

WAC liar (19), coward (7), name (6), idiot (6), hero (5),
horse (5), saint (5), fool (5), snob (4), genius (4)

Twitter
bitch (1534), hoe (432), liar (317), cunt (274),
whore (254), pussy (228), nigger (226),
loser (217), faggot (217), slut (197)

Table 6.5: Comparison of the 10 most frequent pattern matches
(numbers in brackets indicate frequency).

AdjectivePattern (PATadj) Abusive adjectives oftenmodify an abusive noun as in brainless
idiot, smarmy liar or gormless twat. Therefore, my coauthors mined Twitter for adjectives
modifying mentions of the extracted nouns (PATnoun). (My coauthors did not find a con-
struction identifying abusive verbs, so the output from PAT includes no verbs.)

6.4.5 WordNet (WN) and Wiktionary (WK)

My coauthors also usedWordNet (Miller et al., 1990) andWiktionary2, two general-purpose
lexical resources. Unlike WordNet, Wiktionary is produced collaboratively by volunteers
rather than linguistic experts. It containsmore abusive words from the base lexicon, i.e. 97%
(WK) vs. 87% (WN).

62 6. Some linguistic patterns that language models failed to capture

A common way to harness a general-purpose lexicon for induction tasks in sentiment anal-
ysis is by using its glosses (Choi and Wiebe, 2014; Kang et al., 2014). Assuming that the
explanatory texts of glosses are similar among abusive words, glosses were treated as a bag-
of-words feature.
My coauthors also exploited information on word usage. Many abusive words are marked
with tags such as pejorative, derogatory, or vulgar. Both WordNet and Wiktionary contain
such information. However, inWiktionarymore than 6 times as many of the entries include
a tag compared to WordNet.
In order to incorporate a semantic representation more general than individual words, my
coauthors employed supersenses. Supersenses are only contained in WordNet. They rep-
resent a set of 45 classes into which entries are categorized. They have been found effective
for sentiment analysis (Flekova and Gurevych, 2016). Some categories correlate with abu-
sive words. For example, 76% of the words of the base lexicon that belong to the supersense
person (e.g. loser, idiot) are abusive words.

6.4.6 FrameNet (FN)

FrameNet (Baker, Fillmore, and Lowe, 1998) is a semantic resource which provides over
1200 semantic frames that comprise words with similar semantic behavior. My coauthors
used the frame-memberships of a word as features, expecting that abusive and non-abusive
words occur in separate frames.

6.4.7 Generic Features: Word Embeddings

I induced word embeddings from the two largest corpora, i.e. AMZ and WAC (Table 6.2)
using word2vec (Mikolov et al., 2013) in default configuration (i.e. 200 dimensions; cbow).
The best performance was obtained by concatenating for each word the vectors induced
from the two corpora.7

6.4.8 Baselines to Feature-based Approach

In addition to a majority-class classifier, my coauthors considered the following baselines:

Weak Supervision (WSUP) This baseline was a lightweight classifier that does not re-
quire proper labeled training data. It was inspired by previous induction approaches for
sentiment lexica, such as Hatzivassiloglou and McKeown (1997) or Velikovich et al. (2010),
which heuristically label some seed instances and then apply graph-based propagation to la-
bel the remaining words of a dataset. On the basis of word embeddings (Section 6.4.7), my

7I also ran experiments with pre-trained embeddings from GoogleNews but they did not improve classifi-
cation.

6.4. Feature Calibration 63

Figure 1: Illustration of word-similarity graph as used for weakly-supervised baseline (WSUP); seeds for abusive
words (e.g. bitch) are obtained by the output of feature PAT (§4.1.4); seeds for non-abusive words (e.g. disagree)
are high-frequency negative polar expressions.

classifier Prec Rec F1
MAJORITY 33.3 50.0 40.0
MICR:pmi 65.3 59.5 62.2†

MICR:proj 67.1 64.6 65.8∗†

WSUP 77.3 71.0 74.0∗†
SVM:embeddings 77.6 73.9 75.7∗
SVM:linguistic 81.6 73.8 77.5∗

SVM:linguistic+WSUP 82.5 76.5 79.4∗†
SVM:linguistic+embeddings 81.6 79.7 80.7∗

SVM:linguistic+embed.+WSUP 82.9 80.4 81.6†
statistical significance testing (paired t-test at p < 0.05): ∗: better than

previous line but 1; †: better than previous line

Table 6: Different classifiers on base lexicon (Table 1).

projection matrix. We compute a projected micro-
post h = S·E·M which is an n-dimensional vec-
tor. Each component represents a word from the
micropost. The value represents the predictabil-
ity of the word towards being abusive. We then
apply a bag-of-words assumption to use that pro-
jected micropost to predict the binary class label y:
p(y|M)∝ exp(h·1) where 1∈{1}n. This model
is a feed-forward network trained using Stochas-
tic Gradient Descent (Rumelhart et al., 1986). On
the basis of the projected embeddings we rank our
negative polar expressions.

4.4 Evaluation of Features on Base Lexicon

We conduct experiments on our base lexicon (Ta-
ble 1) and report macro-average precision, recall
and f-score. SVMs are evaluated on a 10-fold
crossvalidation. Table 6 displays the performance
of the different classifiers. The least effective in-
formation source are labeled microposts (MICR),
though, as expected, the projected embeddings
(MICR:proj) outperform PMI. The performance
of weak supervision (WSUP) outperforms MICR.

Among the SVM configurations, embeddings

are already effective. The linguistic features out-
perform all other methods. The best classifier is an
SVM trained on embeddings, linguistic features
and the output of WSUP as a further feature.10

Table 7 shows the performance of SVMs us-
ing different linguistic features (§4.1). Among the
three intensity types, the most effective one is the
person-based intensity (INTperson). However, it
can be effectively combined with the remaining
types. Among the lexical sentiment resources used
(i.e. NRC, INTbin and VIEW), VIEW is most ef-
fective. Their combination also results in an im-
provement. The surface patterns (PAT) are surpris-
ingly predictive. Of the general-purpose lexical re-
sources (i.e. WN, WK and FN), WN and WK are
both very effective resources. Glosses from WN
are the strongest individual feature. Combining
WK, WN and FN results in significant improve-
ment. The best feature set combines all features.

Our results also suggest that for languages other
than English, there are some very strong features,
such as PAT, WK or embeddings, that could be
easily adopted since they do not depend on a re-
source which is only available in English.

5 Expanding the Lexicon

We produce a large feature-based lexicon of abu-
sive words by classifying all (unlabeled) nega-
tive polar expressions from Wiktionary. We chose
Wiktionary since our previous experiments indi-
cated a high coverage of abusive words on that re-
source (§4.1.5). The negative polar expressions

10We did not include MICR among the further features, as
they are trained on the labeled microposts that we also use as
test data in the extrinsic evaluation (§6).

1051

Figure 6.1: Illustration of word-similarity graph as used for weakly-supervised baseline
(WSUP); seeds for abusive words (e.g. bitch) are obtained by the output of fea-
ture PAT (Section 6.4.4); seeds for non-abusive words (e.g. disagree) are high-
frequency negative polar expressions.

coauthors built a word-similarity graph, where the nodes represent negative polar expres-
sions and each edge denotes the cosine similarity between the embeddings of two arbitrary
words. The output of PAT from Twitter (Section 6.4.4) is considered as positive class seed
instances. PAT was chosen since it is an effective feature that does not depend on a lexical
resource. The most frequent words in the WAC corpus (Table 6.2) were chosen as negative
class seeds. The rationale was that high-frequency words are unlikely to be abusive. My
coauthors chose WAC instead of Twitter since the evidence of PAT (Table 6.5) suggested
less abusive language in that corpus. This word-similarity graph is illustrated in Figure 6.1.
In order to propagate the labels to the unlabeled words from the seeds, my coauthors used
the Adsorption algorithm (Talukdar et al., 2008).

Using Labeled Microposts (MICR) The last baseline examined the power of labeled mi-
croposts to detect individual abusive words. These experiments were driven by the fact that
labeled microposts already exist. My coauthors considered two methods using the largest
dataset comprisingmanually labeledmicroposts, Wulczyn (Table 6.6). The class labels of the
microposts and the base lexicon (Section 6.3) are the same. The aim is to produce a ranking
of words where the high ranks represent words more likely to be abusive. Following stan-
dard machine learning procedure, my coauthors set a cut-off rank as a decision boundary
(see supplementary material4). Every word higher than this rank is considered abusive and
all other words not abusive.
The first method MICR:pmi ranks the words of the base lexicon by their Pointwise Mutual
Information with the class label abusive that is assigned to microposts. To be even more
competitive, I assisted in introducing a second method MICR:proj that learns a projection
of embeddings. MICR:proj has the advantage over MICR:pmi that it does not only rank
words observed in the labeled microposts but all words represented by embeddings. Since
the embeddings (Section 6.4.7) are induced on the combination of AMZ and WAC corpora,

64 6. Some linguistic patterns that language models failed to capture

dataset microposts abusive source
Warner and Hirschberg (2012) 3438 14.3% diverse
Waseem et al. (2017) 16165 35.3% Twitter
Razavi et al. (2010) 1525 31.9% UseNet
Wulczyn, Thain, and Dixon (2017) 115643 11.6% Wikipedia

Table 6.6: Datasets comprising labeled microposts.

which together are about 360 times the size of Wulczyn, MICR:proj is likely to cover more
abusive words. Let M = [w⃗1, . . . , w⃗n] denote a labeled micropost of n one-hot represen-
tations of words. The aim is learning a one-dimensional projection SE where E ∈ Re×v

represents the unsupervised embeddings of dimensionality e over the vocabulary size v (Sec-
tion 6.4.7) and S ∈ R1×e represents the learned projection matrix. A projected micropost is
computed as h⃗ = (SEM)t which is an n-dimensional vector. Each component represents
a word from the micropost. Each value represents the predictability of the word towards
being abusive. A bag-of-words assumption is then applied to use that projected micropost
to predict the binary class label y: p(y|M) ∝ exp(

n∑
i=1

hi). This model is a feed-forward net-

work trained using Stochastic Gradient Descent (Rumelhart, Hinton, and Williams, 1986).
The negative polar expressions were ranked on the basis of the projected embeddings.

6.4.9 Evaluation of Features on Base Lexicon

My coauthors conducted experiments on the base lexicon (Table 6.1). I report macro-
average precision, recall and f-score. SVMs were evaluated on a 10-fold cross-validation.
Table 6.7 displays the performance of the different classifiers. The least effective informa-
tion source was labeled microposts (MICR), though, as expected, the projected embeddings
(MICR:proj) outperformed PMI. Weak supervision (WSUP) outperformed MICR.
Among the SVM configurations, embeddings were already effective. The linguistic features
outperformed all other methods. The best classifier was an SVM trained on embeddings,
linguistic features and the output of WSUP as a further feature.8 Table 6.8 shows the per-
formance of SVMs using different linguistic features (Section 6.4.1-Section 6.4.6). Among
the three intensity types, the most effective one was the person-based intensity (INTperson).
Among the lexical sentiment resources used (i.e. NRC, INTbin, and VIEW), VIEWwasmost
effective. Their combination also resulted in an improvement. The surface patterns (PAT)
were surprisingly predictive. Of the general-purpose lexical resources (i.e. WN, WK, and
FN), WN and WK were both very effective resources. Glosses from WN were the strongest
individual feature. Combining WK, WN and FN resulted in significant improvement. The
best feature set combined all features.

8MICR was not included among the further features because they were trained on data that overlapped
with the test data for the extrinsic evaluation (Section 6.6).

6.5. Expanding the Lexicon 65

classifier Precision Recall F1
MAJORITY 33.3 50.0 40.0
MICR:pmi 65.3 59.5 62.2†
MICR:proj 67.1 64.6 65.8∗†
WSUP 77.3 71.0 74.0∗†
SVM:embeddings 77.6 73.9 75.7∗
SVM:linguistic 81.6 73.8 77.5∗
SVM:linguistic+WSUP 82.5 76.5 79.4∗†
SVM:linguistic+embeddings 81.6 79.7 80.7∗
SVM:linguistic+embed.+WSUP 82.9 80.4 81.6†

Table 6.7: Different classifiers on base lexicon (Table 6.1). Statistical significance testing
(paired t-test at p < 0.05):
∗: better than two lines above; †: better than previous line.

The results also suggest that for languages other than English, there are some very strong
features, such as PAT, WK, or embeddings, that could be easily adopted since they do not
depend on a resource which is only available in English.

6.5 Expanding the Lexicon

Mycoauthors produced a large feature-based lexiconof abusivewords by classifying all (un-
labeled) negative polar expressions from Wiktionary2. Wiktionary was chosen since previ-
ous experiments indicated a high coverage of abusive words on that resource (Section 6.4.5).
The negative polar expressions were identified by applying to the vocabulary of Wiktionary
an SVM trained on the words from the Subjectivity Lexicon with their respective polarities.
My coauthors used my word embeddings as features (Section 6.4.7). In order to produce
the feature-based lexicon of abusive words, my coauthors trained another SVM on the base
lexicon (Table 6.1) using the best feature set from Table 6.7. With 2989 abusive words, the
expanded lexicon is 5 times as large as the base lexicon.

To measure the impact of the engineered features on the quality of the resulting lexicon,
my coauthors devised an alternative expansion which just employed word embeddings. For
this, they used SentProp, themost effective inductionmethod from theSocialSentpackage
(Hamilton et al., 2016).9

9Since SentProp produces a ranking rather than a classification, they considered 2989 as a cut-off value to
separate the instances into 2 classes. This corresponds to the size of abusive words predicted by the feature-
based lexicon (Table 6.9).

66 6. Some linguistic patterns that language models failed to capture

features used in SVM Precision Recall F1
MAJORITY 33.3 50.0 40.0
INTfine 62.0 57.0 59.4†
INTbin 61.7 60.4 61.0∗
INTperson 70.8 55.4 62.1∗
INTfine+INTbin +INTperson 70.8 60.7 65.3∗†
NRC 60.2 60.1 60.2
VIEW 65.6 62.8 64.2†
INTbin+NRC+VIEW 66.9 68.8 67.9∗†
PATnoun 79.9 58.4 67.4
PATnoun+PATadj 76.4 63.2 69.1
WNusage 82.6 52.6 64.3
FN 66.3 66.4 66.4
WKusage 76.7 61.0 67.9∗†
WKgloss 74.8 64.9 69.5∗†
WNsuper 78.7 64.9 71.1∗†
WNgloss 75.9 67.4 71.4∗
WNusage+WNsuper+WNgloss 76.7 68.0 72.0∗
WKusage+WKgloss 79.5 67.0 72.7∗
all WN + all WK 80.0 68.7 73.9∗
all WN + all WK + FN 80.3 69.5 74.5∗
all from above 81.6 73.8 77.5∗†

Table 6.8: Performance of the different linguistic features on base lexicon (Table 6.1). Sta-
tistical significance testing (paired t-test at p < 0.05):
∗: better than two lines above; †: better than previous line.

baseline lexicon entries newly created lexicon entries
Hatebase 430 base (Table 6.1) 551
Derogatory 1609 expanded:SentProp (Section 6.5) 2989
Ottawa 1746 expanded:feature-based (Section 6.5) 2989

Table 6.9: Lexica used in cross-domain classification of microposts
(figures denote the number of unigrams).

6.6 Cross-domain Classification

6.6.1 Motivation and Set Up

My coauthors then used the expanded lexicon (Section 6.5) to classify entire microposts
rather than words out of context. Table 6.6 shows the datasets of labeled microposts that

6.6. Cross-domain Classification 67

were used. The difference between these datasets is the source from which they originate.
Consequently, different topics are represented in the different datasets. Still, the datasets
contained similar types of abusive language (e.g. racism and sexism). For example, both (9)
and (10) fromWaseem and (11) fromWulczyn are sexist comments10 but (9) and (10) discuss
the role of women in sports while (11) addresses women’s hygiene in Slavic countries.

(9) from Waseem:
maybe that’s where they should focus? Less cunts on football.

(10) from Waseem:
I would rather brush my teeth with sandpaper then watch football with a girl!!

(11) from Wulczyn:
slavic women don’t like to wash…Their pussy stinks.

Since the aim is to produce the best possible cross-domain classifier, all classifiers are trained
on one dataset and tested on another. This is a real-life scenario. Oftenwhen a classifier for
abusive microposts is needed, sufficient labeled data is only available for other text domains.
Having different topics in training and test data makes cross-domain classification difficult.
For example, since a large proportion of sexist comments in Waseem relate to sports, tradi-
tional supervised classifiers (using bag of words or word embeddings) will learn correlations
between words of that domain with the class labels. For instance, the domain-specific word
football occurs frequently in Waseem (i.e. 90 occurrences) with a strong correlation towards
abusive language (precision: 95%). Other words, such as sports and commentator, display a
similar behavior. A supervised classifier will assign a high weight to such words. While such
domain-specific words may aid in-domain classification and enable a correct classification
of microposts, such as (10), it had a detrimental effect on cross-domain classification. My
coauthors claimed that the predictive words that abusive comments share across different
domains are abusive words, just of the sort that the expanded lexicon contains, e.g. cunts in
(9) and pussy in (11).
The classifier for labeling microposts was an SVM trained on features derived from the ex-
panded lexicon (Section 6.5). There was no binary feature encoding the presence of abusive
words. Instead, all abusive words of the lexicon were ranked according the classifier that the
lexicon induced, and then the ranks were used as features.
As baseline classifiers my coauthors considered publicly available word lists (Table 6.9).
The resource from Razavi et al. (2010), henceforth referred to as Ottawa, the entries of
Hatebase11, which has been used in Nobata et al. (2016) and Davidson et al. (2017), and
the derogatory words from Wiktionary (Derogatory)12 were included.13 Finally, the base

10(11) is also a racist comment.
11https://www.hatebase.org
12https://en.wiktionary.org/wiki/Category:English_derogatory_terms
13There are also similar but smaller lists in Wiktionary, e.g. offensive terms. They produced no better results.

https://www.hatebase.org
https://en.wiktionary.org/wiki/ Category:English_derogatory_terms

68 6. Some linguistic patterns that language models failed to capture

lexicon from this work (Table 6.1) was included to evaluate the expansion process of the
two expanded lexica (Section 6.5). For all lists, my coauthors trained on a single feature in-
dicating the frequency of abusive words in amicropost to be classified. Ottawa also contains
weights assigned to abusive words.
Further, 3 classifiers representing the state of the art of in-domain evaluations were evalu-
ated: FastText (Joulin et al., 2017), Gated RecurrentUnits RecurrentNeural NetworksRNN,
which have been reported to work best on English microposts (Pavlopoulos, Malakasiotis,
and Androutsopoulos, 2017), and Yahoo, an SVM trained on the sophisticated feature set
proposed by Nobata et al. (2016). Next to character and token n-grams, Yahoo includes
word and comment embeddings, syntactic features, and some linguistic diagnostics.

6.6.2 Results

Table 6.10 lists the performance of the 3 state-of-the-art classifiers along with my coauthors’
classifier using the expanded lexicon on in-domain 10-fold cross-validation. The point of
this list was to demonstrate the strength of the state-of-the-art classifiers on in-domain eval-
uation. On this setting, a lexicon-based approach is not competitive since domain-specific
information is not included. However, shown in Table 6.11, for cross-domain classification,
it is exactly that property that ensures that the feature-based lexicon provides best perfor-
mance. Compared to the in-domain setting, FastText, RNN and Yahoo display a huge drop
in performance. They all suffer from overfitting to domain-specific knowledge.

classifier Razavi Warner Waseem Wulczyn
expanded:feature-based (SVM) 75.7 64.8 63.8 78.4
FastText 83.4 71.8 76.3 85.6
RNN 74.8 70.5 78.0 86.9
Yahoo (SVM) 82.4 78.2 84.1 90.0

Table 6.10: In-domain classification of microposts (metric: F1-score).

Of all lexica, my coauthors’ feature-based lexicon performs best. The poor performance of
Hatebase was surprising, but attributed to its small size and the high amount of ambiguous
(and debatable) entries, such asCharlie, pancake, and Pepsi. Although the feature-based lex-
icon is the largest of all tested (i.e. 2989 words), the experiments do not support the general
rule that larger lexica always outperform smaller ones. For instance, already the base lexi-
con with 551 abusive words was much better than the lexica Derogatory and Ottawa which
are about 3 times larger (Table 6.9). Each word in the base lexicon was only included if 4
out of 5 raters judged it to be abusive. This ensured a fairly reliable annotation. In contrast,
Derogatory and Ottawa suffer from many ambiguous entries (e.g. bag, Tim, and yellow). The
high precision of the base lexicon is what ensures that the expanded lexicon does not include
much noise.

6.6. Cross-domain Classification 69

SVM
datasets baseline lexica newly created lexica

test train majority FastText RNN Yahoo Hatebase Derogat. Ottawa base SentProp feature-b.
Warner 40.50 50.59 53.76 53.40 40.50 40.50 60.95 61.08 64.20 66.13

Razavi Waseem 40.50 51.64 53.39 51.66 44.29 51.35 63.13 69.69 63.12 74.15
Wulczyn 40.50 71.74 71.59 75.10 40.50 40.50 40.50 40.50 68.50 74.83
Average 40.50 57.99 59.58 60.05 41.76 44.12 54.86 57.09 66.27 71.70
Razavi 46.14 57.73 48.99 55.42 46.14 57.49 59.81 63.57 67.57 64.98

Warner Waseem 46.14 61.45 57.63 56.54 63.52 57.49 64.67 63.57 62.75 64.64
Wulczyn 46.14 58.35 57.36 60.19 46.14 46.14 46.14 46.14 65.34 63.35
Average 46.14 59.18 54.66 57.38 51.93 53.71 56.87 57.76 65.22 64.32
Razavi 40.62 60.91 54.67 57.83 40.62 52.66 52.95 57.33 64.56 63.32

Waseem Warner 40.62 58.28 58.85 60.65 40.62 40.62 40.62 54.93 51.98 58.66
Wulczyn 40.62 56.33 54.13 51.76 40.62 40.62 40.62 40.62 50.27 62.90
Average 40.62 58.51 55.88 56.75 40.62 44.63 44.73 50.96 55.60 61.63
Razavi 46.88 64.65 64.43 70.70 46.88 50.97 57.70 69.56 67.69 73.71

Wulczyn Warner 46.88 56.21 56.13 52.73 46.88 46.88 55.93 59.55 66.38 70.06
Waseem 46.88 52.66 57.33 51.23 43.51 50.97 60.08 69.56 66.38 72.39
Average 46.88 57.84 59.30 58.22 45.76 49.61 57.90 66.22 63.52 72.05

Table 6.11: Different classifiers on cross-domain classification of microposts; best result in
bold (metric: F1-score).

Another shortcoming of most of the other existing lexica is that they overwhelmingly focus
on nouns. While nouns undoubtedly represent the most frequent abusive terms, there is,
however, a substantial number of abusive words that belong to other parts of speech, partic-
ularly adjectives (e.g. vile, sneaky, slimy, andmoronic). In the base lexicon, more than 30% of
the abusive words are adjectives. The expanded lexicon, which roughly preserves that ratio,
includes about 800 adjectives in total. Since abusive adjectives often co-occur with abu-
sive nouns (Section 6.4.4), they may compensate for abusive nouns that are missing from
the lexicon. Such unknown nouns often occur when authors of microposts try to obfuscate
their abusive language, e.g. sneaky assh0le and slimy b*st*rd. Interestingly, the modifying
adjectives are not obfuscated, probably because they are considered slightly less offensive in
tone.
Given that, among the newly created lexica, the feature-based expanded lexicon performed
best, my coauthors concluded that the expansion was effective (since there was an improve-
ment over the base lexicon), and the features were more effective than a generic induction
approach (i.e. SentProp).

6.6.3 Explicitly vs. Implicitly Abusive Microposts

The results in Table 6.11 also show that the cross-domain performance of my coauthors’
feature-based lexicon is lower on the two datasets Warner and Waseem. My coauthors ob-
served that while for the other two datasets almost all abusive microposts can be considered
explicitly abusive posts, i.e. they contain abusive words, a large proportion of microposts la-
beled abusive in Warner and Waseem are implicitly abusive (Waseem et al., 2017), i.e. the
abuse is conveyed by other means, such as sarcasm or metaphorical language as in (10). My

70 6. Some linguistic patterns that language models failed to capture

coauthors asked raters from ProlificAcademic to identify explicitly abusive microposts by
marking abusive words in those posts. The annotators were not given access to any lexicon
of abusive words. They then conducted cross-domain classification on those subsets where
the abusive instanceswere only those rated as explicit. The results are displayed in Table 6.12.
The table shows that the feature-based lexicon is much better on this subset, while the most
sophisticated supervised classifier (Yahoo) still performs worse. From that, my coauthors
concluded that only explicitly abusive microposts can be reliably detected in cross-domain
classification.

Yahoo feature-based lexicon
test train all explicit all explicit

Razavi 55.4 65.2 65.0 80.6
Warner Waseem 58.1 55.9 64.6 79.0

Wulczyn 60.2 72.8 63.4 80.7
Average 57.9 64.6 64.3 80.1
Warner 58.5 61.2 63.3 62.0

Waseem Razavi 61.1 63.1 58.7 78.8
Wulczyn 51.2 68.2 62.9 78.5
Average 56.9 64.2 61.6 73.1

Table 6.12: Cross-domain classification of microposts: all test data vs. explicit subset
(metric: F1-score).

6.7 Conclusion
For the task of inducing a lexicon of abusive words, my coauthors painstakingly developed
novel features including surface patterns, sentiment views, polar intensity, and adapted
general purpose lexical resources, particularly Wiktionary. Surprisingly, machine learning
over labeled microposts could not capture this information to the same degree, even with a
projection-based classifier. So the big question is why. I cannot dismiss the possibility that
with a larger, more advanced model trained on more data, some of these patterns could be
learned. But the features were, for the most part, local. As discussed in previous chapters,
long distance dependencies, sparse data, and polysemy make language modeling harder.
These are not the issue here. Looking towards the second part of this thesis, the explanation
consistent with my data is that there is common sense knowledge, perceptuomotor knowl-
edge, and other kinds of knowledge at play that are divorced from the kinds of patterns
that language models capture. In my work with thematic fit (Greenberg, Sayeed, and Dem-
berg, 2015; Greenberg, Demberg, and Sayeed, 2015a,b; Sayeed, Greenberg, and Demberg,
2016), I argued that humans use implicit knowledge that they do not talk about because it
is assumed that everyone already knows it. The key, as explained in Part II, is catching the
implicit knowledge within some explicit human behavior.

Part II

Relating language models and human
behavior measures

Chapter 7

An experiment on distinguishing
human-written and LM-written text

The successes from the novel language model architectures that I worked on led me to con-
sider a grander perspective on our results. Were language models already at or approaching
some ceiling of performance? From this starting point, my coauthors and I ran an experi-
ment in which the second halves of sentences were removed, languagemodels were sampled
to re-complete the sentences, the originals were mixed in, and humans rated all of the sen-
tences for humanness (Shen et al., 2017). At the time, the original sentences scored higher,
but I postulate that now, with wide-scale availability of Transformers, the scores would be
much closer, if not indistinguishable. Of course, the task can, and has, been made harder
(Dugan et al., 2020), but in later chapters, I use this experiment as a backdrop for the argu-
ment that languagemodels should be evaluated against human behavior for their underlying
probability distributions rather than text that is sampled from them.

7.1 Introduction

Advances in languagemodeling, including those described in the first part of this thesis, have
led to remarkable performance gains across many language model-dependent tasks. Speech
recognition systems have been reported to perform almost as well as humans (Xiong et al.,
2016; Saon et al., 2017). Inmachine translation, purely neural network-basedmodels can al-
ready achieve performance comparable to the traditional phrase-based machine translation
systemMoseswith a small vocabulary (Meng et al., 2016). Languagemodels were generating
coherent, human-like novel sentences at least as far back as Bowman et al. (2016).
Such gains led my coauthors and me in Shen et al. (2017) to consider the possibility that
language models were at or approaching some sort of ceiling in terms of a comparison with
human performance on various applications of language models. I was instrumental in de-

74 7. An experiment on distinguishing human-written and LM-written text

signing and analyzing an experiment that quantified the position of language models at the
state of the art in 2017 relative to this ceiling. In the paper, my coauthors and I used the
terms “ideal” and “perfect” to describe a hypothetical language model that could perform
tasks at least as well as a human could. As such, my coauthors and I named the project
“the language model Turing Test” referring to the “Imitation Game” put forward by Turing
(1950). The essence of this game is that a human converses with some entity over a medium
that obscures whether that entity is another human or a machine. In some variants, the hu-
man converses with one of each and is asked to guess which is which. In other variants, the
human converses with just one entity at a time and is asked afterwards if they thought the
entity was human. Note that in the original formulation, the outcomes are binary. Either
the entity is deemed human or not. Or in the two entity version, the human distinguishes
correctly or not. One of my major individual contributions to this work was designing the
experiment in such a way that the experiment generates more than binary data. Through
this design, my coauthors and I were able to “reverse engineer” a perplexity for the language
model at the performance ceiling. Thus, this can be considered the “perplexity” of a human.
Recall that perplexity is usually used as a metric to measure the quality of language models.
Nonetheless, it would be challenging to calculate a direct estimate of the perplexity of a “per-
fect” language model. As a language model approaches optimality, its perplexity approaches
the exponential of entropy of the language itself. Cover and King (1978)’s variation of the
Shannon Game (Shannon, 1951) tried estimating the entropy of English, but this was calcu-
lated at the character-level and was based on pure human subjects. Brown et al. (1992) pro-
posed estimating the upper bound for the entropy of English by training a 3-gram language
model, but this was also at the character-level and language models have made dramatic
breakthroughs since then. Word error rate in speech recognition is strongly correlated with
perplexity regardless of the language model architecture (Klakow and Peters, 2002; Sunder-
meyer, Ney, and Schlüter, 2015). However, a language model is one of two components in
a classical speech recognition system, where its role is to score how well options for recog-
nized language units fit together. The other component, the acoustic model, generates these
options from the acoustic signal. Disentangling the effect of language modeling and thereby
estimating the performance of an ideal model is infeasible.
In this chapter, I describe the experiments that I helped to design and analyze. In the analysis,
my coauthors and I assumed:

• A perfect language model can fully understand the mechanisms beneath a language
and assign the word probability in a way similar to the human intuition.

• When asked to complete sentences with provided contexts, by greedily generating the
most probable word, the generated sentences should be absolutely plausible.

• The generated sentences, when mixed with normal sentences, should be at least in-
distinguishable or have even higher scores with respect to plausibility.

7.2. Language Models 75

On account of these assumptions, my coauthors trained a variety of languagemodels, which
ranged from the basic 3-gram count-based model to a long short-term memory (LSTM)
model. These models were sampled so they greedily generated words given a sentence start
with fixed 8 words. The generated sentences, together with the original ones, are then ran-
domly shuffled and judged by humans. Every model is assigned a human judgement score
for its generated sentences. The experiment revealed a strong correlation between the lan-
guage model performance and the human judgement score. Based on the correlation, my
coauthors and I estimated performance of a human-comparable language model by poly-
nomial regression. It is worth mentioning that this estimated performance is just a lower
bound, not the exact value, of a perfect language model as every assumption itemized pre-
viously is a necessary but not sufficient condition of a previous one. The experiment results
show that in 2017, there was still a discrepancy between the models and the lower bound.

7.2 Language Models

Four classes of language models were featured in the experiments, n-gram & feedforward
neural network (FNN), maximum entropy (ME), RNN with maximum entropy (RNNME),
and RNN & LSTM. I describe them here so that I can more precisely argue that this formu-
lation of the task may not obtain similar results if the experiment were to be repeated with
contemporary state-of-the-art language models.

n-gram and FeedforwardNeural Network Traditionally, count-basedmodels are used to
approximate such a probability based on the frequency information extracted from a train-
ing corpus (Katz, 1987). With the Markov assumption (Ney, Martin, and Wessel, 1997)
and smoothing techniques, probability can be easily estimated from the counting informa-
tion of n-grams. My coauthors trained 3-gram and 5-gram models with Chen and Good-
man (1996)’s modified Kneser-Ney smoothing. Compared with the original Kneser-Ney
smoothing, instead of using a single discounting parameterD, it has three different param-
eters D1, D2 and D3+ that are applied to n-grams with one, two and three or more counts.
Experiments showed that this method outperformed other smoothing techniques (Chen
and Goodman, 1996).
FNNs were the first neural network architecture introduced to language modeling (Bengio
et al., 2003). Similar to count-based models, FNNs only consider the most recent n−1 pre-
ceding words in predicting the next word. Every word is mapped from a one-hot vector to
a distributed representation where more semantic information can be encoded.

Maximum Entropy Maximum entropy (ME) is another popular model. With features
and constraints, it tries tomaximize the entropy of theword probability distribution (Rosen-
feld, 1996). This model is computationally expensive but more features could be added to
improve the performance. ME estimates the word probability as follows

76 7. An experiment on distinguishing human-written and LM-written text

p(w|h) = exp(
∑

i γifi(w, h))

Z(h)

where f is the feature function, γ is the set of parameters to be learned andZ is a normaliza-
tion term for a given history. My coauthors applied the ME extension of the SRILM toolkit
(Stolcke, 2002) for training. In our case, only up to 5-gram features are used and l1 + l22
regularization is added to prevent overfitting. For parameter optimization, the Orthant-
Wise Limited-memory Quasi-Newton (OWL-QN) method through the libLBFGS library
is applied (Alumäe and Kurimo, 2010).

RNNwithMaximumEntropy In comparison to FNNs, the RNNarchitecture has a recur-
rent layer to maintain the memory of all past information so that it can learn longer-range
dependencies than FNNs. Maximum entropy can also be incorporated as part of the RNN
model (RNNME), which would further reduce the perplexity (Mikolov et al., 2010, 2011b).
The RNN part includes an input layer x(t), a recurrent hidden layer s(t) and an output layer
y(t) for each time step t. To speed up normalization, my coauthors divided words into, say
50, classes and the output layer is factorized as a class probability and a word probability
(Mikolov et al., 2011c). Words are assigned to classes based on their unigram frequencies.
RNNME trains ME as part of the RNN model. Since ME models and the softmax outlayer
layer are similar, they can be viewed as a direct connection between input and output layer
and the direct parameters can be learned during training (Mikolov et al., 2011b). In our
experiment, only bigram and 3-gram features are used, a 1-billion-size hash (Mikolov et al.,
2011b) is used to map such features in order to reduce the complexity and speed up the
training process.

Vanilla RNN and LSTM The vanilla RNN is an RNNME without ME part. Though theo-
retically powerful, the training of RNNs is much more complex than FNNs. Because of the
vanishing gradient problem (Bengio, Simard, and Frasconi, 1994), vanilla RNNs fall short
of learning weight parameters in a way that long-range dependencies can be captured. To
solve this problem, Hochreiter and Schmidhuber (1997) proposed the LSTM neural net-
work architecture, further extended by Gers, Schmidhuber, and Cummins (2000) and Gers,
Schraudolph, and Schmidhuber (2002). The resulting structure utilized a gatingmechanism
to ensure backpropagation of useful information through many time steps. Unlike vanilla
RNN, where the effective backpropagation ranges usually up to 6 steps, LSTM can propagate
errors for more than 20 steps without losing validity.
My coauthors trained the FNN, RNN and LSTM on multiple GPUs by separating training
data into sequences of fixed length. An embedding layer and a projection layer is added to
reduce complexity. They implemented batch noise-contrastive estimation (Gutmann and
Hyvärinen, 2010) (FNN and RNN) and importance sampling (Bengio and Senécal, 2003)
(LSTM) to handle vocabulary size at scale.

7.3. Human Judgement 77

7.3 Human Judgement

Independently from language model training, my coauthors and I extracted 400 sentences
from the test corpus, each containing at least 16 words. Sentences containing colons or quo-
tation marks were filtered out beforehand because, as initial experiments confirmed, such
punctuation severely interferes with human judgements and people themselves disagree on
proper usage. For each sentence, the first 8 words were kept and the language models com-
pleted the sentence by greedily generating the most probable word until an end token was
reached. If a language model did not output an end token within 50 words, the generated
sentence was considered incomplete. In the experiment, only 3-gram models generated a
fair amount of incomplete sentences; the other language models finished almost all of the
sentences within the limit of 50 words. The incomplete sentences were retained for the ex-
periment with ellipses appended to them.
A snippet of sentence examples is shown in Table 7.1.

Context Wednesday was the first day at school for
Trigram the first time in the first time in the …
5-gram the first time in the history of the world .
ME the first time in the history of the world .
RNN the first time .

RNNME the city ’s history .
LSTM the school ’s president , who has been …

Original quadruplets Sarah , Peter , Lucy …

Table 7.1: Example of generated sentences.

My coauthors and I randomly shuffled together all of the generated sentences, together with
the original versions, and submitted them to the crowd-sourcing website CrowdFlower.1

Participants were instructed that the first 8 words of the sentences displayed were the fixed
context and the following words could have been generated either by human or machine.
The participants rated on a 4-level Likert (1932) scale:

• 3 (clearly human)

• 2 (slightly human)

• 1 (slightly not human)

• 0 (clearly not human)

I specifically had the idea to have the participants rate the sentences on a 4-level scale in-
stead of the more common 5-level or 7-level scale. That way, participants were forced to

1https://www.crowdflower.com

https://www.crowdflower.com

78 7. An experiment on distinguishing human-written and LM-written text

indicate a preference on every sentence rather than choose a neutral score. Only native En-
glish speakers with the highest trust level onCrowdFlower (based on previous participation)
participated. At least three different participants judged each sentence andmajority vote de-
termined the final score for each sentence. If all three participants disagreed, my coauthors
and I collected more judgements dynamically until at least half of all judgements were in
consensus. In total, there were 288 participants.

7.4 Experiments and Results

My coauthors derived the training and testing corpora from the One Billion Word Bench-
mark dataset (Chelba et al., 2013) collected fromEnglish newspapers with about 850million
words. As mentioned before, my coauthors pruned sentences containing special tokens.
This led to a corpus containing approximately 700 million words. A small subset was re-
served as the test corpus. The rest was split into 100 segments. The vocabulary was fixed to
be all types that appeared in the first segment, which was 158451 words. Then, other tokens
were mapped to UNK.
My coauthors trained the 3-gram, 5-gram and ME on both the first segment and the whole
data set, 6 language models in total. They trained a 5-gram 500-1500-600 FNN on the entire
training set. 500, 1500 and 600 refer to the embedding size, hidden layer size and projection
size respectively. My coauthors trained the RNNME incrementally on the first 1, 3, 6 until
21 segments with the hidden layer size fixed at 600, so 8 language models in total. Since
RNNME models can only be trained sequentially on CPUs, the training process was quite
slow. So, training was stopped at 21 segments, which constitutes around 20% of the whole
corpus. My coauthors trained a 500-1500-600 vanilla RNN on both the first segment and
the whole corpus. They also trained seven LSTM models on the whole corpus, all of which
sharing the same embedding size of 512 but differing in the state size, projection size and
drop-out rate.

7.4. Experiments and Results 79

7.4.1 Uncertainty of Data

This experiment involved ranking languagemodels by perplexity values that were somewhat
close. So, I had an imperative to ensure that the differences in perplexity were robust (sig-
nificant) enough to justify the rankings. So, my coauthors and I adopted the uncertainty
measures and correlation adjustments from Klakow and Peters (2002).
All data points in the experiment were assumed to be independent, as in one sentence does
not influence the score of another. According to central limit theorem, the arithmetic mean
of a sufficiently large number of independent random variables is approximately Gaussian-
distributed (Bárány and Vu, 2007) with standard deviation SDx̄ = σ√

n
. Here my coauthors

and I used sample standard deviation s to approximate the population standard deviation
σ. The uncertainty of the measurements could then be defined as x± 2SDx̄. The factor of
2 yields a 95% confidence interval.
When dealing with functions, uncertainty can be transformed by

∆f(z1, . . . , zn) =

√√√√ N∑
i=1

(
∂f

∂zi
)2(∆zi)2

where zi is the uncertainty of each parameter (Klakow and Peters, 2002).
After fitting the data points with polynomial regression, my coauthors and I measured the
goodness of fit with adjusted R2 (Cameron and Windmeijer, 1996)

R2
adjusted = 1− (1−R2)(N − 1)

N − k − 1

whereR2 is the sampledR2, andN and k are the number of samples and regressors. Com-
pared with normal R2, R2

adjusted imposes an increasing penalty as the number of regressors
increases to prevent overfitting.

80 7. An experiment on distinguishing human-written and LM-written text

Table 7.2 gives the full list of the languagemodels featured in the experiment. As an example,
L-2-4096-1024-0.1 denotes a 2-layer, 4096 state size, 1024 projection size, 0.1 drop-out rate
LSTM language model. This was the largest model that fit into Titan X GPU memory.

Model PPL Rank Top1(%) Score
3-gram-1 303.2 3.48 19.7 0.11
3-gram-all 112.2 2.75 24.0 0.16
5-gram-1 281.0 3.43 21.1 0.24
5-gram-all 73.7 2.43 31.2 0.60
ME-1 286.5 3.46 21.2 0.27
ME-all 68.8 2.40 31.8 0.64
FNN-all 83.0 2.56 26.3 0.56
RNN-1 211.1 3.28 21.5 0.33
RNN-all 45.7 2.12 31.9 2.08
RNNME-1 196.3 3.21 22.2 0.44
RNNME-3 136.0 2.93 23.7 0.41
RNNME-6 109.7 2.78 24.8 0.43
RNNME-9 107.5 2.76 25.4 0.42
RNNME-12 103.1 2.72 25.0 0.40
RNNME-15 91.3 2.63 26.1 0.48
RNNME-18 106.9 2.76 24.0 0.44
RNNME-21 78.9 2.52 26.9 0.71
L-1-512-512-0.1 63.2 2.41 30.0 1.36
L-1-1024-512-0.1 54.5 2.29 31.8 1.86
L-1-2048-512-0.1 45.3 2.19 33.1 2.39
L-1-8192-2048-0.5 35.9 1.95 33.8 1.54
L-1-8192-2048-0 37.5 1.97 34.8 2.60
L-2-2048-512-0.1 39.8 2.09 35.0 2.91
L-2-4096-1024-0.1 33.6 1.94 36.2 3.51
Human (estimated) 12.0 1.14 40.5 7.95

Table 7.2: Performance of language models in LM Turing Test

7.4.2 Metric-based Performance

My coauthors and I tested the performance of language models with three automatic eval-
uation metrics: perplexity, mean log rank, and percentage of the target word’s probability
being ranked first (Clarkson and Robinson, 1999). Only the generated part of each sentence
(everything after the first 8 words) factored into the calculation. Table 7.2 contains all re-
sults for the models that were tested. As shown, the three metrics are highly consistent with
each other. Also, the models that had larger training corpora had a substantial advantage.

7.4. Experiments and Results 81

For RNNME, increasing the size from 1 to 21 segments continuously brought the perplexity
from 196 down to 78, nearly monotonically. As expected, the 3-gram performed the worst
among all the languagemodels. FNN (83.0) performedworse than the 5-gram (73.7) despite
consuming much more training time. ME trained on the whole corpus performed surpris-
ingly well (68.8) with only up to 5-gram features included. The best LSTM model took 2
weeks to converge and achieved a perplexity of 33.6, only slightly worse than the reported
record (30.0) from Jozefowicz et al. (2016).

7.4.3 Human Judgement Score

Let ni denote the number of sentences being judged with score i. My coauthors and I no-
ticed n1 (slightly not human) and n2 (slightly human) were quite similar over all language
models. After manually examining these sentences, my coauthors and I found they were
quite difficult to be judged clearly. n0 and n3 were more reliable. In consequence, the fi-
nal form of the humanness metric in this experiment was set to be the ratio of n3 (clearly
human) to n0 (clearly not human).
The last column of Table 7.2 shows the human judgement scores. Models with better metric
scores normally, though not always, had better chances of successfully fooling humans. One
major exceptionwas the 3-grammodel trained on the full corpus, which achieved a very low
human judgement score (0.16) with an intermediate perplexity (112.22). Original sentences
received a human judgement score of 7.95, which is a big lead over all languagemodels, even
to the best LSTM model (3.51). It is worth noting that even for original sentences, quite a
few of them were judged as clearly not human since they were novel, contained professional
terms, or had problematic artifacts from tokenization. This suggests that the real human
performance is even higher in general, highlighting that our estimate is a lower bound.

Figure 7.1: (Left) Human Judgement Score versus Top 1 Percentage, Adjusted R2: 0.955.
(Right) Human Judgement Score versus Mean Rank, Adjusted R2: 0.934.

82 7. An experiment on distinguishing human-written and LM-written text

Figure 7.2: Human Judgement Score versus Perplexity, Adjusted R2: 0.953.

Figure 7.1 and Figure 7.2 illustrate the correlation between human judgement score and
each metric: perplexity, top 1 percentage, and mean rank. My coauthors and I fit a third de-
gree polynomial to each plot (blue curve). The horizontal dashed line stands for the human
judgement score from the original sentences. These lines can be viewed as the lower bound
of a “perfect” language model. The points of intersection between the dashed lines and the
fitted curves can then be used to approximate our three metrics for a “perfect” language
model. My coauthors and I further annotated the points in the scatter plots with years of
publication. Note the logarithmic x-scale in Figure 7.2 and the linear x-scale in Figure 7.1.
The adjustedR2 was greater than 0.9 for all three automaticmeasurementmetrics. The fitted
curve suggests a perplexity of 12 for a human-comparable language model. The suggested
values for mean log rank and top 1 percentage are 1.14 and 40.5%. Interestingly, given the
averageword length of 5.5, Shannon (1951) estimated the lower bound onhuman-level word
perplexity as 20.648·5.5 = 11.8, which is consistent with our result.

7.5 Conclusion

This work had participants explicitly rate whether they thought sentences were human writ-
ten or AI written. While the experiment rather conclusively showed that humans could tell
the difference in 2017 with this specific data and these language models, there are some im-
portant limitations to note. The half sentence contexts, while appropriate at the time, proba-
bly are too short for language modeling capabilities and prompt engineering needs of today.
Multiple human ratings per text would be more reliable. Lastly, there is much room to de-
velop how the language models are sampled, and published methods have shown promising
ways to increase the diversity of the generated text (Ippolito et al., 2019).
Following my work, Dugan et al. (2020) produced a similar, more advanced framework.
They had participants guess where text shifted from human-written to AI written. This was
a great way to make the task harder, which keeps it relevant as language models improve.

Chapter 8

LMs capture varying amounts of word
length and frequency information

In Chapter 7, I shared the details of a study in which people rated human-written and artifi-
cially created text. I observed trends that the perplexity and the ratings were closely related,
and the perplexities of state-of-the-art language models were steadily moving towards some
ideal. The paradigm and trends seemed to persist even with more advanced language mod-
els than existed at the time (Dugan et al., 2020). But a language model divergence would
predict that these trends would weaken or reverse. I first hypothesized the divergence when
I saw the results from Chapter 7, but I did not (yet) have data to support the hypothesis.
For reasons of policing academic integrity, attributing authorship, and many others, it is of
great importance to be able to tell reliably between human-written and artificially created
text. This seems to have become difficult only recently. Although, as I mentioned in Chap-
ter 1, this could bemore about accessibility of technologies than the technologies themselves.
As further anecdotal evidence for the accessibility argument, GPTZero (Tian, 2023a), a clas-
sifier for human-written versus artificially created text, debuted one month after the release
of ChatGPT. GPTZero rose to intense popularity, securing high-profile relationships with
educational institutions and others (Tian, 2023b).
Perhaps surprisingly, the core idea behind GPTZero is incredibly simple. Using your own
language model, compute two metrics: the perplexity of the entire test document and the
standard deviation of the perplexities of the individual sentences (Tian, 2023a). GPTZero
set a decision boundary based on these, and later some proprietary, features to classify text as
human-written or artificially created. I claim that this very simple technique works, in part,
because of the language model divergence. I agree with Tian (2023a) that human-like text
will have higher perplexity than artificially created text. The success of GPTZero directly
suggests that this is true. Further, if language models continue to exploit information that
humans do not use, I predict that the language model divergence will widen. So, it may
become easier to distinguish between artificially created text and human-written text!

84 8. LMs capture varying amounts of word length and frequency information

That said, there are a number of potential confounds that complicate the endeavor to bring
scientific weight to these claims. By confound, I mean that there could be some other vari-
able that affects both the perplexity and whatever metric for humanness at the same time.
Consider word frequency, defined in terms of the count of occurrences of a given word
in a sufficiently large text. Kirchenbauer et al. (2023) proposed a way to “watermark” text
generated by language models by making the language model generate words from a secret
list more frequently than corpus statistics would suggest. The problemwith using perplexity
in this case is that the words in the test corpus all have different frequencies which together
inform a single perplexity value. As such, perplexity is most likely not enough on its own to
detect these frequencymanipulations. I claim that a languagemodel builder could also do an
analogousmanipulation for the lengths of words, with the added benefit that the relationship
between average surprisal andword length has beenmore tested in the literature (Piantadosi,
Tily, and Gibson, 2011; Meylan and Griffiths, 2021; Levshina, 2022).
A promising solution would be to consider not the perplexity of the test document, but the
individual surprisals (negative logarithm of probability) of the words in the test document.
That way, if there are any differences between what the surprisals are and what they “should
be” according to some other model, this would be detectable. Specifically, the procedure is
to compute the average surprisal for eachword and correlate these against word length. Now
note how cyclical this procedure is: a language model possibly created some text and then
another language model is needed to provide individual surprisals for the words to compare
against those from yet another language model (based on word length only).
It would be much simpler to have all language models under consideration score the same
human-written text and compare the properties of the surprisals. I also argue that working
with the surprisals rather than text generated from the language models constitutes using
something that is more essential to the language model than whatever text was generated
from it on isolated occasions.
In this chapter, I set up the computational framework for obtainingword-by-word surprisals
from state-of-the-art language models. Then, I use the framework to address evidence for
three hypotheses. First, I verify that average surprisals per word according to many types of
language models are correlated with word length. Second, the overall relationship between
perplexity and the sizes of these correlations is unclear, since fluctuations in the size of the
test corpus and out-of-vocabulary (OOV) rate correspond to fluctuations in the size of the
correlations. Third, comparingwithin families of GPTmodels, the surprisals from the larger
models are less correlated with word length and frequency.

8.1 Background

In applications from Huffman (1952) coding to language evolution, there is a clear effort
incentive for the most frequently used symbols to be the shortest. This observation by Zipf
(1936, 1949) goes hand-in-hand with his most famous result, Zipf ’s Law: there is a negative

8.1. Background 85

linear relationship between the log frequency of a word in text and the log of its rank in
a frequency list. Although languages are, for the most part, products of cultural evolution
rather than consciously designed, the fact that languages universally uphold this property
lends a sense of optimality to their design. Saffran, Aslin, andNewport (1996) observed that
even eight month old infants are sensitive to the frequency distributions of syllables. So,
this type of information is clearly available, although subconscious, during the diachronic
processes that influence lexical innovation and evolution.
Piantadosi, Tily, and Gibson (2011) provided a groundbreaking refinement to the appar-
ent relationship between word length and word frequency. Their work argued that it is
the word’s predictability in context, rather than its frequency, that has the stronger rela-
tionship with word length (in letters). To support this claim, they examined huge corpora
across eleven languages with a straightforward operationalization of predictability in con-
text. Namely, they trained unsmoothed n-gram language models (LMs) on their data, ran
the same data through them, and computed Spearman rank correlations between the lan-
guage model surprisals and the lengths of the words. In short, predictability is negative
surprisal. Importantly, since an n-gram LM computes the probability of an upcoming word
solely on the basis of the preceding n − 1 words, the notion of context in their work was a
purely local one. To illustrate, consider the example sentence:

(1) GPT-4 is an LM.

Disregarding the dubious status of “LM” as a word, this two letter word is, in terms of overall
English language use, quite infrequent. Yet, knowing the context that this sentence is about
GPT-4, “LM” is quite predictable. Accordingly, a languagemodel that considers at least three
words of history might assign “LM” a low surprisal. A 2-gram or 3-gram language model
might assign “LM” an especially high surprisal given that words that start with “L” almost
never follow the word “an”. Thus, the surprisals from the “better” languagemodels are better
equipped than frequency to predict that “LM” is a short word.
Despite the intuitiveness of the example and psycholinguistic reasons that make this find-
ing attractive, the Piantadosi, Tily, and Gibson (2011) result has been the subject of several
studies that doubt its robustness, especially in languages other than English. Meylan and
Griffiths (2021) found that the Piantadosi, Tily, and Gibson (2011) effect is “attenuated’’
when following best practices of corpus linguistics. They pointed out that the choices for
what counts as a word during LM scoring, which words should be included in the correla-
tion analysis, and how to match vocabularies across languages can change the correlations.
Additionally, they noted that web data may not be suitably created by humans for this analy-
sis, using ASCII to encode wordsmay have collapsed important distinctions between words,
and Piantadosi, Tily, and Gibson (2011) should have used dictionaries of words1, to select
lists of words for the correlation analyses.

1They identified the Intercontinental Dictionary Series as a way to capture somewhat of a common list of
semantic concepts among languages.

86 8. LMs capture varying amounts of word length and frequency information

Just as with Meylan and Griffiths (2021), Levshina (2022) found that after considering some
important factors, especially differences among properties of noun phrases in different lan-
guages, the Piantadosi, Tily, and Gibson (2011) effect was attenuated. Levshina (2022) even
found that running a backwards language model (one that only uses the future words as
context to predict the past) was sometimes a better predictor of word lengths than frequen-
cies or regular surprisals. Specifically, Levshina (2022) found that the following are related
to whether the Piantadosi, Tily, and Gibson (2011) effect is observed for a given language:
1) whether modifiers go before or after their objects, 2) how long the modifier and object
words are (influenced by where the agreement markers go), and 3) “orthographic conven-
tions’’ such as where the writing system includes spaces.

8.2 Common methods

In my experiments, I used the WikiText-103 corpus (Merity et al., 2016) because of its com-
parable size to the British National Corpus and because many contemporary languagemod-
els published perplexity benchmarks on this dataset. The corpus contains 28,475 English
Wikipedia articles in the training set and 60 in the test set. Merity et al. (2016) preprocessed
the text, replaced rare words, and preserved the hierarchical structure of each article by sur-
rounding headings with various numbers of ‘=’ symbols. For instance, titles start and end
with ‘=’, sections with ‘= =’, subsections with ‘= = =’, etc. Splitting on white space, it has
101,425,658 tokens in the training set and 241,211 tokens in the test set. Merity et al. (2016)
reported slightly larger numbers, perhaps using different tokenization.
I experimentally found some support for the Piantadosi, Tily, and Gibson (2011) claim in
this dataset, provided that I performed the analysis on at least 10 million tokens in the train-
ing set. So, I extracted the first 3,085 articles from the training set into a new version of the
corpus that I call “10M”. Splitting on whitespace, this corpus has 10,004,966 tokens.
Recall that in Chapter 1, I defined a language model as a program that associates individual
surprisals to words (more precisely tokens). So, it may be surprising that I need multiple
pages to describe my process for obtaining these numbers from language models that have
already been trained. While it is true that the application programming interface from hug-
gingface contains commands that release the surprisals, there aremany, many complications
that could render the numbers unusable formy purposes. Note that for several conventional
use cases of language models, the specific surprisal numbers are not needed, so any compli-
cation that makes the surprisals “uniformly” wrong or only occurs rarely might not affect
the application too much.
I can only speculate as to why researchers such as Wilcox et al. (2020) explicitly mentioned
that they could release their code for this but decided not to. My speculation is that they, too,
discovered how complicated it is. I developed my own code base from scratch over several
years, after not finding something existing that was suitably correct and customizable. When
Oh and Schuler (2023) released their code for this, it further justified my claim that writing

8.2. Common methods 87

code to produce accurate word-by-word surprisals is a substantial accomplishment. Even
they and I disagreed in interesting ways, and I recommend either my code adapted from
theirs or my code written strictly before theirs in different situations.
In the next part of this section, I outline the most important complications for computing
word-by-word surprisals using contemporary language models. Then, I finish with a dis-
cussion of the data that I used and the most important accompanying choices.
I developed customizable preprocessing for my surprisal calculation pipeline as language
models require that the evaluation text is formatted similarly to the training text. For exam-
ple, if the training text is all lower case, the evaluation text must be converted to all lower
case. I wrote code to handle lowercasing, automatic addition of beginning of text and / or
end of text tokens, reformatting of special tokens such as unk2 that already exist in the cor-
pus, transliteration of German umlauts, cleanup of extraneous white space, and removal of
punctuation characters, as appropriate on a case-by-case basis.
After preprocessing, the text needs to be split into “sentences” for the purpose of providing
good contexts for the word position. For Wikipedia articles, the most appropriate choice
is to split the corpus into its component articles. The competing choice (treating the en-
tire corpus as one document) does experimentally result in nominally better perplexities.
Further, as far as I can tell, researchers such as Radford et al. (2019) used the competing
choice when reporting their perplexity benchmarks. It comes down to whether the end of a
Wikipedia article should be allowed to contextualize the beginning of the next one. While
there are no guarantees as to a topic overlap between two Wikipedia articles, there could be
other structural properties that positively inform the language model predictions just be-
cause they help the language model customize its predictions to the domain of Wikipedia
articles. Indeed, large Transformer language models are usually trained on many types of
text, not just Wikipedia, so their predictions are general. But, I assert that the first part of
a Wikipedia article is the best contextualizing information, so I chose to split on articles as
that favors these article introductions during batching (see below).
For the psycholinguistic datasets that I explore in later chapters, themost appropriate choice
is to split into sentences based on the experimental items. It is best practice to shuffle the
experimental items, so no one item is systematically influenced by another. Splitting this
way leads to worse perplexities from the language models, but it more closely mirrors the
conditions of the human psycholinguistic experiment.
After sentence splitting, the text needs to be tokenized, using either a byte-pair encoding
(BPE) tokenizer specific to a Transformer language model, or whitespace tokenization for
other models. huggingface tokenizers do not use UTF-8 encoding, meaning that charac-
ters with diacritics and characters in other scripts would sometimes be rendered with some
“emergency” character string. This mattered because then the tokens would not always be a
subset of thewords they came from, which complicates the inverse process (detokenization).

2This denotes a token that occurred fewer times in the corpus than some threshold.

88 8. LMs capture varying amounts of word length and frequency information

Also, during tokenization, a suitable start token needs to be inserted at the beginning of
the text so that the first real token of the sentence can be scored correctly using the same
process as that for all following tokens. I worked with three families of English GPT models,
all available on huggingface: GPT-2 (Radford et al., 2019), GPT-Neo (Black et al., 2021), and
OPT (Zhang et al., 2022). GPT-2 and GPT-Neo have the same token that starts and ends
a text, but it is not automatically added to the sentence during tokenization, so my code
handles that. OPT adds a start token automatically during tokenization. The German GPT-
2 models that I used for experiments in later chapters did not always have an apporpriate
token to start a text with, so I used a newline character in this case.
After tokenization, the sentences need to be batched because Transformer models usually
have a large but limited maximum context size. GPT-2 has a maximum context size of 1024
tokens and GPT-Neo and OPT have a maximum context size of 2048 tokens. I found that
about 14% of the articles in WikiText-103 are 1024 tokens or fewer and 41% of the articles
are 2048 tokens or fewer. Therefore, I had tomake a decision about how to handle the case in
which the entire article did not fitwithin the Transformer context. Onmyown, I developed a
slow batching solution. In this version, the batches are as large and overlapping as possible.
So, for example, when scoring with GPT-2, the first batch would be the first 1024 tokens,
and the model would predict the 1024th token using the previous 1023 tokens as context.
Then, the window would move forward by one token. I call this slow batching because the
model only makes one prediction per batch.
In contrast, the fast batching solution, based on code from Oh and Schuler (2023), uses a
50% overlap scheme. So for a long Wikipedia article being scored by GPT-2, the first batch
would produce 1023 predictions (not counting the start token), and then the second batch
would start halfway through the first batch, resulting in around 512 new predictions. While
this method is faster, it is substantially less accurate because of the 50% overlaps. Effectively,
some tokens would be predicted using half of the available context, rather than the longest
context possible. Note that the start token and the token being predicted count within the
1024 tokens. So, a Wikipedia article exactly 1024 tokens long would still need two batches.
The Oh and Schuler (2023) code that I used did not handle this case correctly and had to be
changed.
While the shortened contexts from fast batching were not ideal, it made feasible some use
cases that were not feasible using slow batching. With slow batching, the smallest GPT-
Neo model could score a 241,211 words corpus in 20 hours. With fast batching it took one
minute. With fast batching, the smallest GPT-Neo model could score my largest corpus (10
million words) in 90minutes. The estimated 60 days of processing time to use slow batching
instead was not feasible.
For my code that generates one prediction per batch, I was able to use the log likelihood
function directly from huggingface. The fast batching method computes a softmax over the
output logits for each batch. The output from both versions of this code is a list of surprisals,
one for each token according to the tokenizer specific to the language model that generated
the surprisals.

8.2. Common methods 89

As the last step in theGPT pipeline, the systemneeds to undo the tokenization and aggregate
the token-by-token surprisals so they become word-by-word surprisals. This was challeng-
ing to implement because each word comprised some variable and unpredictable number
of tokens. However, the uncontroversial mathematical solution to this problem is to sum
the surprisals of the tokens that comprise a word. By the properties of exponents, this is
equivalent to multiplying the probabilities of the subword tokens. Once the false, but con-
ventionally accepted, assumption that the subword tokens are independent of each other is
adopted, that sum of surprisals is, by definition, the surprisal of the word.
Practically speaking, this was not easy because detokenizers that comes with language mod-
els do not provide a method tomerge the surprisals alongside the tokens. So, I implemented
two solutions. For the special character detokenizer, I observed that whitespace before a
word appears as special character at the beginning of the first token of a word for GPT-2
family tokenizers, thus distinguishing these word-initial tokens. Combined with more logic
for handling newline characters, this function successfully detokenized over ten corpora in
multiple languages, including text with non latin1-encoded characters, such as Roman
letters with accents and other diacritics.
However, this code absolutely relies on the existence of the special whitespace character, so I
also adapted code from Oh and Schuler (2023) as a greedy detokenizer. This one works by
matching tokens to parts of a current word. Once all parts of the word are accounted for, the
system knows that the word is complete, so it computes the sum of the token-level surprisals
and moves on the next word. While this solution does not expect or require any whitespace
characters, it does require that the tokens are all strictly part of the original words. Unfortu-
nately, as discussed within the tokenizer paragraph, this was not always the case. Thankfully,
one of the two detokenization methods worked for all of my experimental configurations.
As the pipeline abovewas architecture-specific for tokenization, batching, scoring, and deto-
kenization, I had to write separate pipelines for BERT and for LSTM language models.
The BERT pipeline used the fill-mask pipeline from huggingface as its base. The fill-mask
pipeline either supplies the top words to fill a masked position in a text, or gives surprisals
for specific words that could fill the masked position. Because of BPE tokenization, I tok-
enized on whitespace, masked the relevant position, detokenized, and then BPE-tokenized
the masked version of the sentence. According to huggingface documentation and experi-
ence with providing filler words for the mask that would have been tokenized by the BPE
tokenizer intomultiple parts, this process could successfully accommodate filler words com-
prising multiple tokens.
I queried BERT in two settings: “future” which gives the masked and encoded sentence to
BERT as described, and “no_future” in which I removed all tokens following the mask
token. For the LSTM pipeline, I adapted code from Gulordava et al. (2018). I substantially
modified the way that themodel was saved and loaded, and the batching code. The batching
part was somewhat straightforward since, as a recurrent model, the context is theoretically
infinite. So, I used each full article as a batch.

90 8. LMs capture varying amounts of word length and frequency information

I trained a 2-gram, 3-gram, 4-gram, and 5-gram language model on the full WikiText-103
training set (100 million tokens) using the SRILM toolkit (Stolcke, 2002). After calculating
the individual token surprisals, I averaged over the unique words (types) to get one average
surprisal per type. I computed these averages while truncating the corpus at many points
along a logarithmic scale, to see how they change as the size of the test corpus varies. This
introduced a second way to generate frequencies. I could either use the frequencies from
the entire corpus (100M freq) or just the portion of the corpus that is currently being used
to compute the average surprisals (running freq). As expected, the correlations with word
length for these two frequency calculationmethods approached the same value because once
the whole corpus was included in the surprisal averaging, the theoretical distinction disap-
peared. I converted all frequencies to surprisals so that the correlations would be in the same
direction as the language model surprisals. And, I verified that the log transformation did
not alter the Spearman correlations, as remarked in Levshina (2022).
I obtained the LSTM fully pre-trained from Gulordava et al. (2018). From their supplemen-
tary materials, it is a two-layer model with a hidden and embedding size of 650, a batch size
of 128, a dropout rate of 0.2, and a learning rate of 20.0, trained for 40 epochs.
Work by Oh and Schuler (2023) on eye-tracking reading times inspired me to investigate
GPT models within the same family but at different sizes. The GPT models that I used were
as follows: GPT-2 in the “small” (GPT-2-SM) and “extra-large” (GPT-2-XL) sizes (Radford
et al., 2019), GPT-Neo in the 125million parameter (Neo-125M) and the 6 billion parameter
(Neo-6B), also called GPT-J, sizes (Black et al., 2021), and OPT in the 125 million param-
eter (OPT-125M) and the 6.7 billion parameter (OPT-6.7B) sizes (Zhang et al., 2022). I
used bert-base-cased (BERT) with 110 million parameters (Devlin et al., 2018), as well. All
models were freely available on the huggingface hub.
To investigate the impact of quality of the frequencies, I also imported a list of the 333,333
most common types (1T freq) in Google’s Trillion Word Corpus, made available by Norvig
(2009). Piantadosi, Tily, and Gibson (2011) used the n-grams from this corpus (Brants and
Franz, 2006) in their original analysis. I expected that these frequency statistics would be
higher quality because the dataset is larger. So, I hypothesized that this would correspond
to a higher correlation with word length.
Since Levshina (2022) used the Hunspell dictionary, I obtained the list for English and re-
strictedmy analysis to those words as well. This dictionary is quite clean and cased, meaning
that words appear in their canonical casing, such as lower case for commonnouns, first letter
upper case for proper nouns, and all upper case for acronyms. But then I merged this dictio-
nary with the 1T frequency list, which is not cased. Therefore, the only words left were those
that are naturally all lower case. Finally, I removed all words with non-alphabetic charac-
ters. After this procedure, the number of tokens in each corpus was roughly halved, and the
number of types varied from 1,000 to about 24,000 based on the original corpus size.

8.3. Results and Discussion 91

8.3 Results and Discussion

101 102 103

Perplexity (PPL)

0.16

0.18

0.20

0.22

0.24

Sp
ea

rm
an

 r
ho

 b
et

w
ee

n
su

rp
ri

sa
l a

nd
 le

ng
th

Correlation with length versus perplexity on WikiText-103 10M corpus

LMs
100M freq
2-gram
3-gram
4-gram
5-gram
LSTM
GPT-2-SM
GPT-2-XL
Neo-125M
Neo-6B
OPT-125M
OPT-6.7B
BERT

Figure 8.1: Scatter plot of the average-surprisal to word-length Spearman correlations ver-
sus perplexity for several language models.

My first hypothesis was that average surprisals perword according tomany types of language
models are correlated with word length. This has been tested before for n-gram language
models, but tomy knowledge, my experiment is the first to explore this for Transformer lan-
guagemodels following the framework and best practices from Piantadosi, Tily, and Gibson
(2011), Meylan and Griffiths (2021), and Levshina (2022).
The smallest correlation in Figure 8.1 is positive and very significant: Spearman ρ = 0.15,
p = 6.9 · 10−81. I assert that the LSTM correlation was smaller than the others because
the LSTM had a smaller vocabulary than the other models did. I did not test the LSTM
further because the main focus is state-of-the-art language models, and the Transformer
models performed much better. This is visible in Figure 8.1: the points for Transformer
models appear much farther to the left. Points above the blue “M1” point in Figure 8.1 are
consistentwith Piantadosi, Tily, andGibson (2011). The correlation coefficient for the points
in Figure 8.1 is negative, but not significant: Spearman ρ = −0.46, p = 0.12.
In the figure, the perplexity for BERT was based on the regular “future” technique. This was
necessary because with the “no_future” technique, the model has to score incomplete sen-
tences unlike anything seen in training, resulting in abnormally high surprisals. However,
for the correlation with word length, I used the “no_future” version as this one is compara-
ble to the other language models in that it makes predictions in the forward direction only.
The fact that the perplexity and correlation values for BERT are consistent with the other
models justifies these choices.

92 8. LMs capture varying amounts of word length and frequency information

LM Steiger (1980) t-value p-value significance level
2-gram 1.52 0.13
3-gram 1.11 0.26
4-gram -0.67 0.50 X (wrong direction)
5-gram -1.14 0.25 X (wrong direction)
LSTM -13.93 0 X (wrong direction)
GPT-2-SM 5.05 4.4 · 10−7 ***
GPT-2-XL 2.65 0.0080 **
Neo-125M 4.92 8.8 · 10−7 ***
Neo-6B 0.55 0.58
OPT-125M 5.00 5.7 · 10−7 ***
OPT-6.7B 0.74 0.46
BERT 6.18 6.4 · 10−10 ***

Table 8.1: Comparison of several average-surprisal to word-length Spearman correlations
against the 100M freq to word-length Spearman correlation.

My second hypothesis was that the overall relationship between perplexity and the sizes
of the average surprisal-word length correlations is unclear, since fluctuations in the size
of the test corpus and out-of-vocabulary rate correspond to fluctuations in the size of the
correlations. My results for this hypothesis are in Table 8.1, Figure 8.2, and Figure 8.3. As
shown, the correlations using languagemodel surprisals were often significantly higher than
the correlation using frequency. But there are some important exceptions. The high quality
1T frequencies achieved a higher correlation than any of the language models. Granted,
all of these language models were trained and tested on fewer than one trillion words. It is
possible that the small version of GPT-Neo could overtake the 1T freq curve if I tested on
a larger dataset. But, since the corpus size is on a log scale, it appears to need at least one
billion filtered words (so perhaps two billion words total). I did not test this due to memory
limitations of my computational setup.

Note that, as shown in Figure 8.2, at 241,211 words, the size of theWikiText-103 test corpus,
the correlations nicely decrease as perplexity decreases. Although Piantadosi, Tily, and Gib-
son (2011) only claimed that surprisal in general correlates better with length than frequency
does, it would be very reasonable to extend the theory such that better surprisals result in
even better correlations. But at this corpus size, this is the opposite of what happened. That
result, and those from other experiments that I ran with only medium size datasets over the
years, led me to believe that the Piantadosi, Tily, and Gibson (2011) claim was false. How-
ever, with at least 10 million words and analyzing as many types as possible, my results are
somewhat consistent with their theory.

But Figure 8.3, showing results from limiting the analysis to just the most frequent 1,000
words, is again inconsistent with the Piantadosi, Tily, and Gibson (2011) theory. This ma-
nipulation is somewhat similar to using a cross-linguistic dictionary of semantic concepts or

8.3. Results and Discussion 93

104 105 106 107

Test corpus size (tokens)

0.0

0.1

0.2

0.3

0.4

Sp
ea

rm
an

 c
or

re
la

tio
n

be
tw

ee
n

su
rp

ri
sa

l a
nd

 ty
pe

 le
ng

th
Correlation with length versus corpus size

LMs
1T freq
100M freq
running freq
2-gram
3-gram
4-gram
5-gram
GPT-Neo

Figure 8.2: Average-surprisal to word-length Spearman correlations for three classes of lan-
guage models as corpus size grows.

104 105 106 107

Test corpus size (tokens)

0.0

0.1

0.2

0.3

0.4

0.5

Sp
ea

rm
an

 c
or

re
la

tio
n

be
tw

ee
n

su
rp

ri
sa

l a
nd

 ty
pe

 le
ng

th

Correlation with length versus corpus size

LMs
1T freq
100M freq
running freq
2-gram
3-gram
4-gram
5-gram
GPT-Neo

Figure 8.3: Average-surprisal to word-length Spearman correlations for three classes of lan-
guagemodels as corpus size grows, limited to the top 1,000most frequentwords.

considering more words to be out-of-vocabulary, as recommended by Meylan and Griffiths
(2021). Figure 8.3 also explains that GPT-Neo only starts correlating strongly after enough
words are included in the analysis, suggesting that infrequent but correctly unsurprising
words seem to interfere with the theory. Some spot-checking revealed that such words like
“LM” in the introductory example are the strongest counters to the trend.

94 8. LMs capture varying amounts of word length and frequency information

104 105 106

Corpus size (tokens)

0.00

0.05

0.10

0.15

0.20

Sp
ea

rm
an

 c
or

re
la

tio
n

be
tw

ee
n

su
rp

ri
sa

l a
nd

 ty
pe

 le
ng

th

Correlation with length versus corpus size

GPT2-SM
GPT2-XL
Neo-125M
Neo-6.0B
OPT-125M
OPT-6.7B

Figure 8.4: Spearman correlations between surprisal and type length for three families of
GPT languagemodels as corpus size grows. The dotted curves correspond to the
“small” size models and the solid curves correspond to the “large” size models.

My third hypothesis was that comparing within families of GPT models, the surprisals from
the larger models are less correlated with word length and frequency. Figure 8.4, Figure 8.5,
and Figure 8.6 all support this from various angles. Figure 8.4 is in the same style as Fig-
ure 8.2 and Figure 8.3. For nearly all corpus sizes, the smaller models have higher corre-
lations with word length. Note that GPT2-XL is much smaller than the other two “large”
configurations (1.5 billion parameters versus 6.0 and 6.7 billion), so this hypothesis would
also predict that the larger GPT-2 model would have higher correlations with word length
than the other two larger language models. As shown in Figure 8.4, this happened as well.

For Figure 8.5 and Figure 8.6, I computed “simple” linear models (slms). These are linear
models that do not contain so called mixed effects, which are a best practice when working
with measures taken experimentally, such as human behavior data. Mixed effects separate
out variance in the data that is assumed to be random, such as idiosyncrasies of a particular
word or experimental participant. Since these models relate word length, word frequency,
and average surprisal for all occurrences of a word, there were no experimental measure-
ments taken.

8.3. Results and Discussion 95

0 2 4 6 8 10 12 14
Percent (%)

OPT-6.7B
OPT-125M
Neo-6.0B

Neo-125M
GPT2XL

GPT2SM
M5
M4
M3
M2

1
Percent variance explained for predictors of WikiText-103 Train 10M length slms

Predictors
M1
trillion
LM
trillion:LM

Figure 8.5: Percent of variance explained by each predictor for linearmodels of word length
trained on the WikiText-103 train set 10 million tokens (10M).

0 5 10 15 20 25 30 35 40
Percent (%)

OPT-6.7B
OPT-125M
Neo-6.0B

Neo-125M
GPT2XL

GPT2SM
M5
M4
M3
M2

Percent variance explained for predictors of WikiText-103 Train 10M LM Surprisal slms

Predictors
length
M1
trillion

Figure 8.6: Percent of variance in LM surprisals explained by each baseline predictor for
linear models trained on the WikiText-103 train set 10 million tokens (10M).

For Figure 8.5, the models learned a linear formula for word length in terms of the full
WikiText-103 training set frequency (M1), the frequency from the Trillion Words Corpus
(trillion), the average surprisals from the various language models explored in this chapter
(LM), and the interaction between the trillion frequency and the LM surprisal. M2, M3,
M4, and M5 correspond to the n-gram language models with the numbers representing n.
The “1” slm did not use any nontrivial language model, just the two frequency variables M1
and trillion.
I computed an analysis of variance table for each of the models, which associates a percent
of variance explained with each of the predictors in the model. The figure shows that the
smaller GPT model surprisals explained more variance in word length, and the interaction
between the high quality trillion frequencies and the language model surprisals made up
most of the difference between the n-gram models and the Transformer models.
For Figure 8.6, I trained models that predict in the other direction, so length and two kinds
of frequency were used to predict the language model surprisals. The figure shows that the
lower the perplexity was, the smaller the variance explained was for length, M1 frequency,
and overall.

96 8. LMs capture varying amounts of word length and frequency information

In conclusion, the percent variance explained values decreasedmonotonically with perplex-
ity, but the correlation with word length increased from n-grams to Transformers and then
fell back as the Transformers grew. I assert that correlating word length or frequency against
surprisal values is a first indication of the language model divergence. However, the results
are dependent on dataset size, other implementation choices, and a foundational assump-
tion that is somewhat disputed in the psycholinguistic literature. Namely, if the Piantadosi,
Tily, and Gibson (2011) result were verifiable in more configurations, it would be easier to
claim that correlations with word length or frequency are robust metrics of humanness. But
since this is not the case, I find it worthwhile to investigate other metrics against which to
compare the language model surprisals.
These experiments have the limitation that they do not exhaustively evaluate whether the
result from Piantadosi, Tily, and Gibson (2011) remains supported for contemporary lan-
guage models. I followed best practices from subsequently published critiques of that result,
but I did not scale up to the prohibitively large dataset size needed to take on themain result.
I stopped short of this not only for the memory considerations, but also because I do not
need to verify or assume that result for the bigger picture of the thesis. Instead, the results
presented in this chapter are intermediate in nature. The three hypotheses serve as small,
self-contained scientific findings that support the idea that my framework for calculating
word-by-word surprisals produces sensible and sanity checked surprisal values. They also
underscore the importance of accounting for length and frequency effects when evaluating
language model surprisals against proposed humanness metrics.

Chapter 9

Perplexity is sometimes dissociated from
fit to psychometric data

In this chapter, I further develop the idea that languagemodel surprisals should be compared
against suitable humanness metrics as a way to evaluate the language models that is in some
ways “superior” to perplexity. Recall that I theorized a language model divergence in which
perplexities would continue to improve but only because the languagemodels were learning
patterns that humans do not use. So, after a language model divergence, perplexity and
metrics of humanness would decrease together.
While I used correlationwithword length as a humannessmetric inChapter 8, I selected two
online reading behavior measurement paradigms for this chapter: eye-tracking fixation du-
rations and G-Maze response times. It is common knowledge that longer words take longer
to read and more frequent words take less time to read, so it is clear that word length and
word frequency are correlated with these online reading behavior measures. In Chapter 8,
I showed that word length and word frequency are correlated with language model sur-
prisals. Therefore, when predicting online reading behavior measures from language model
surprisals, length and frequency are positioned to confound the results. As such, the psy-
cholinguistics literature (e.g. Wilcox et al., 2020) has coined psychometric predictive power.
This term refers to the difference in log likelihood of a psychometric (inmy case, the reading
behavior measurements) between a mixed effects model that incorporates language model
surprisals and a mixed effect model that does not. These mixed effects models account for
baseline fixed effects, including length and frequency, and random effects, including an in-
tercept for each experimental participant. By comparing a mixed effects model against one
that does not factor in language model surprisals, The change in the log likelihood repre-
sents the psychometric predictive power of the language model above and beyond length
and frequency.

98 9. Perplexity is sometimes dissociated from fit to psychometric data

Before discussing the results of several psychometric predictive power analyses, I present in
Section 9.1:

9.1.1 background for and a systematic comparison of measures derived from eye-tracking
fixation durations

9.1.2 descriptions of important properties of the eye-tracking and G-Maze datasets ana-
lyzed in this work

9.1.3 a literature review of work that relates language model surprisals and eye-tracking

9.1.4 a list of baseline predictors that have been explored in the past and my accompanying
decisions whether to include them in my models.

Then, I discuss evidence for three important hypotheses for this thesis.

9.2 I show the outcome of the structure of baseline, experimental, and random effects that
I hypothesized were appropriate to include based on Section 9.1.4.

9.3 I show that language model surprisals

(a) explain more variance in G-Maze response times
than they do in total fixation durations.

(b) explain more variance in total fixation durations
than they do in first pass reading times.

(c) explain more variance in first pass reading times
than they do in first fixation durations.

9.4 I show that a previously known dissociation between perplexity and psychometric
predictive power becomes more extreme with dedicated handling of part of speech,
which is somewhat inconsistent with existing explanations of the dissociation.

9.1 Background and common methods

9.1.1 Measures based on eye-tracking fixation durations

The movements that human eyes make during reading can be seen as both simple and com-
plicated. With the use of high-precision recording equipment, it is now somewhat common
knowledge that eye movements can be categorized into at least two groups: fixations and
saccades. During a fixation, the eye stops moving while the reader attends to a small visual
field. During a saccade, the eye moves quickly from one fixation to the next. According
to Engbert, Longtin, and Kliegl (2002), the fovea (the central region of the retina used for
sharp vision) processes a visual field of about one degree wide. That translates to about 6-8

9.1. Background and common methods 99

Roman characters. The eye can pick up some information beyond this area (a process called
parafoveal vision), but the clarity or resolution declines substantially with distance from the
foveal visual field (Engbert, Longtin, and Kliegl, 2002).

This is especially important for the present experiments because it is possible for a word to
be only partially within the foveal visual field. The eye-tracking device identifies the center
of the foveal visual field, and this point is usually unambiguously within a word. So, it is
mostly reasonable to say that the eye is fixating on that word during a fixation, with the
caveats that the whole word may not be within the foveal visual field during the fixation,
and other words may be wholly or partially within it as well. Suppose, as an example, a
fixation centers on the first letter of a ten-letter word that follows the word “a”. Conventional
eye-tracking procedure would count this as a fixation on the ten-letter word, even though
“a” is wholly within the foveal visual field, and less than half of the ten-letter word is within
the foveal visual field.

Even if the entire word is within the foveal visual field, it is perhaps common sense that if a
word is longer, i.e. has more characters, there is more information to perceive and transmit
to the brain, so the reading time is longer. This can manifest either in a longer lasting fixa-
tion, more distinct fixations, or some combination of the two. This leads to the first of three
“derived” eye-tracking measures that I discuss and use as data in this chapter. The first fix-
ation duration (FFD) of a word is the time, usually in milliseconds, of only the first fixation
whose measured center is within that word. If the eye saccades to another point within the
word, that time is not added to the FFD.

The sum of the fixation durations from the first time the eye fixates on a word to the first
time the eye fixates on a different word is called the first pass reading time (FPRT). Perhaps
surprisingly, not all saccades are in the forward direction of reading. While, of course, the
reader can make a conscious decision to go back and read something that has been passed
already, it is also possible for the eye to saccade backwardswithout such a conscious decision.
But regardless of the direction or consciousness of the saccade, leaving the word signals the
end of the FPRT.

The sum of all fixation durations for fixations that are centered within a word is called the
total fixation time (TFT) for that word. Thus, the TFT includes the fixations from however
many passes during which the eye stops on that word.

In summary, then, the FFD must be contained within the FPRT, and the FPRT must be
contained within the TFT. If no fixation centers occur within a word, then that word is
“skipped” and that word has no value for the FFD, FPRT, and TFT. As Demberg and Keller
(2008) pointed out, this is not the same situation as having even one very short fixation.
They argued, and I adopted, the notion that it is inappropriate to consider the FFD, FPRT,
or the TFT to be zero in this case. Some datasets, e.g. Provo (Luke and Christianson, 2018),
have zeroes for TFTs only, implicitly arguing that if there were no fixations, the sum of the
durations is zero. However, as this was the only case in which zeroes occurred in the data,
I straightforwardly removed these to bring the TFTs in line with the FPRTs and FFDs.

100 9. Perplexity is sometimes dissociated from fit to psychometric data

During a fixation, the human reader must at least identify the word being read, called lexical
access. One of the largest debates in psycholinguistics involves the questions “What else does
the reader spend effort on?” and perhaps separately, “What else does the reader spend time
on?”. The Prediction Hypothesis states that most of time is used to identify the word. The
Integration Hypothesis states that most of the time is used to integrate the identified word
with previously obtained information. I organized Demberg and Keller’s (2008) position on
this with respect to FFD, FPRT, and TFT in Table 9.1.

Measure Conventional association
FFD “lexical access, but also oculomotor processes and visual properties of the region”
FPRT “early syntactic and semantic processing (as well as lexical access)”
TFT “textual integration processes (as well as lexical and syntactic/semantic processing)”

Table 9.1: These explanations are quoted from Demberg and Keller (2008).

The predictability of a word in context (which is negatively related to surprisal, as discussed
in Chapter 8) could theoretically inform any or all of the lexical access, syntactic, semantic,
and integration processes. Consider a physical dictionary (book) as a metaphor for lexical
access. In the extreme case, which psycholinguistic evidence does not support, the words
in this dictionary are in a fixed alphabetical order, so one would use nothing more than the
surface properties of a word (spelling) to locate it within the dictionary. In a slightly better,
but still unsupported case, the words would be ordered according to their frequencies. Thus,
“the” would be the first word in the dictionary of English, because this is the most frequent
word in the dictionary. But it would be even more mathematically optimal if the words
in the dictionary “rearranged” during reading, such that the most probable continuations
of the speech or text would appear first. Ehrlich and Rayner (1981) are often cited as the
first to show that beyond the length of a word, a highly predictive context can shorten FFDs
significantly. So, there is at least some truth to the rearranging-words-in-the-dictionary
metaphor. But, most scientific work that verifies this result uses discrete conditions of pre-
dictability, for instance, high predictability versus low predictability. So, the precise nature
and size of this effect is not clear, as natural reading does not fall into such course categories
of predictability.
Fortunately, the exact mechanism does not need to be fully understood before I can justify
relating language model surprisals and the three eye-tracking measures. Predictability ex-
plains clearly some, and clearly not all, of these numbers. Since TFTs describe all of the time
that a human eye was fixated on a word, and language models use all of the information
that scientists have figured out how to represent computationally to make their predictions,
I believe that TFTs should theoretically have the closest link to predictability in context. In
Section 9.3, I show that this is true quantitatively.

9.1. Background and common methods 101

9.1.2 Datasets

100 200 300 400
Reading Time (ms)

Dorothy
didn't
know.

She
looked
around

her
anxiously

for
some

familiar
landmark;

but
everything

was
strange.
Between

the
branches

of
the

many
roads
were

green
meadows

and
a

few
shrubs

and
trees,

but
she

couldn't
see
the

farm-house
from

which
she
had
just

come,
or

anything
she
had

ever
seen

before,
except

the
shaggy

man
and

Toto.

RTs by Word

100 200 300
Reading Time (ms)

When
the

new
world

was
first

discovered
it

was
found

to
be,
like
the
old,
well

stocked
with

plants
and

animals,
and

inhabited
by
a

great
many
tribes

and
nations

of
men;

and
yet
the

plants
and

animals,
if

not
the

men,
were

all
essentially

different
from

those
known

in
the
old

world.

RTs by Word

0 500 1000
Reading Time (ms)

Voltaire
himself

probably
won

around
half

a
million

livres--a
large

fortune,
which

he
then

made
even

larger
in
a

series
of

canny
investments.

Soon
Voltaire

was
a

very
rich

man,
rich

enough
to

become
a

moneylender
to

the
powerful

and
famous,

rich
enough

that
he
no

longer
had

to
stake

his
financial

well-being
on

that
most

unreliable
and

detestable
profession--

writing

RTs by Word

Figure 9.1: Provo example texts. Blue – FFD, Orange – FPRT, Green – TFT.

The Provo corpus (Luke and Christianson, 2018) contains 55 English “texts” of 39 to 60
words each. Each text contains 1 to 4 sentences, selected so that each text was approxi-
mately the same length. The left panel of Figure 9.1 contains the shortest sentence (Dorothy
didn’t know.) and the middle panel is all one sentence. Texts excerpted literature, history /
encyclopedic, and news.
Luke and Christianson (2018) performed whitespace-based tokenization on Provo. Thus,
“livres–a” and “profession–writing” in Figure 9.1 (right panel) were considered one word
(region) each for eye-tracking purposes. The Transformer language model tokenizers of
course separated these into multiple tokens, so I made sure that the non-Transformer lan-
guage models also treated these as multiple words. Also, there were four encoding errors

102 9. Perplexity is sometimes dissociated from fit to psychometric data

in the text in which an unknown character was encoded as a question mark. I do not know
exactly how the text was presented to participants, but leaving these question marks in the
text wildly affected the language model surprisal values. Therefore, I replaced the question
marks with what I believe were the correct symbols (three apostrophes and one em dash),
computed the surprisals on the corrected text, and threw out all six altered tokens from my
analysis. This way, my analyses did not get an unfair advantage from my altered tokens, but
the other words in the same text had more reliable surprisals because they were no longer
affected by these encoding and tokenization irregularities.
Luke and Christianson (2018) measured cloze completions at each word (not used in this
work) and FFD, FPRT, and TFT for 84 participants. Provo has 2,743 words. All words were
fixated by at least one participant. I removed the 55 words that began a text, the 55 words
that ended a text, and the 6 words that I described previously (“profession–writing” also
ended a text). Therefore, my final Provo dataset contained 2,628 words.

100 200 300
Fixation Duration (ms)

Den

Ton

gab

der

Künstler

seinem

Gehilfen

FDs by Word

100 200 300
Fixation Duration (ms)

Der
alte

Kapitän
goß

stets
ein

wenig
Rum

in
seinen

Tee

FDs by Word

100 150 200 250
Fixation Duration (ms)

Manche

Menschen

stottern

bei

Nervosität

FDs by Word

Figure 9.2: PSC example texts. Blue – FFD, Orange – FPRT, Green – TFT.

The Potsdam Sentence Corpus (PSC) (Kliegl et al., 2004; Kliegl, Nuthmann, and Engbert,
2006) contains 144 individual German sentences of 5 to 11 words each. Figure 9.2 presents
the first (left panel), longest (middle panel), and shortest / last (right panel) sentence in PSC.
These sentences were crafted to be uniform rather than drawn from diverse genres.
Most versions of PSC, such as Hohenstein, Matuschek, and Kliegl (2017), published single
fixation durations (SFDs) for up to 273 participants on all words except the first and last in
each sentence. So, if a participant skipped a word or fixated on it multiple times in the first
pass, Hohenstein, Matuschek, and Kliegl (2017) removed the data for those fixations.
For uniformity and better appropriateness of the eye-tracking measures, I used the version
of PSC from Boston et al. (2008, 2011) which measured FFD, FPRT, and TFT for 222 partic-
ipants. PSC is 1,138 words long. Boston et al. (2011) did not report eye-tracking measures
for the 144 words that began each sentence and the 144 words that ended each sentence.
But, I would have removed these anyway. Ten of the remaining words were not fixated by
any participant. These ten words all occurred in different sentences. Therefore, my final
PSC dataset had 840 words.

9.1. Background and common methods 103

The ZuCo corpus was the result of two large-scale projects that each measured eye-tracking
and electroencephalography (EEG) simultaneously. ZuCo 1.0 (Hollenstein et al., 2018) had
12 participants and ZuCo 2.0 (Hollenstein et al., 2020) had 18 participants. When ZuCo 1.0
and 2.0 were published originally, the eye-tracking data (usually kilobytes or megabytes of
data)weremixedwith the EEGdata (several gigabytes of data) and the participantswere kept
separate. Hollenstein et al. (2021a) released a combined edition of ZuCo 1.0 and ZuCo 2.0
with just the eye-tracking data (convenient file size) but the participants were averaged to-
gether. Hollenstein et al. (2021b) acknowledged that averaging over the participants makes
analyses of the data much less meaningful because it becomes harder to claim that observed
patterns are due to a robust behavior distinction and not random variation among the par-
ticipants. But despite this, they left by-participant analysis for future work.
Over a process of several weeks, I painstakingly filtered the original ZuCo 1.0 and ZuCo 2.0,
reverse engineered which sentences made it into the combined version, fixed bugs in the
published data processing scripts, correctly handled missing data, and corrected miscella-
neous encoding and file corruption errors. In a triumphant feat of data wrangling, the token
count for my dataset with the by-participant data intact exactly matched the token count for
the averaged dataset as reported in Hollenstein et al. (2021b): 20,545 tokens.
On account of the familiarity of the dataset that I obtained over this process, I can report that
this dataset has 1,049 sentences. 400 sentences are movie reviews written in a quite informal
style (e.g. “…a bland murder-on-campus yawner”), and the rest are from Wikipedia articles
(300 from ZuCo 1.0 and 349 from ZuCo 2.0). Several of the Wikipedia sentences appear
two and three times.
Out of the 20,545 tokens, I removed the 1,049 sentence-initial tokens and the 1,049 sentence-
final tokens. An additional 106 tokens were not fixated. Finally, I removed 232 tokens be-
cause they contained no alphanumeric characters. Therefore, my final dataset contained
18,109 tokens. This size makes ZuCo the largest, commonly used, sentence-based, English
dataset of eye-tracking measures. I use the term sentence-based to distinguish ZuCo from
the Dundee corpus (Kennedy and Pynte, 2005) in which participants read entire newspaper
articles andGECO (Cop et al., 2017) in which participants read an entire novel. While those
two datasets are each approximately twice the size of ZuCo, very long passagesmake it much
harder to control practical issues during data collection. For example, there is no hope of
having the whole passage on one line, which means that for various words, the participant
must shift their eyes to the following line. It is simple enough to throw out first and last
words on a line, but it is possible that unwanted effects from moving to a new line spread
to the other words, too. And, coming from the language modeling side, if the maximum
context size for a language model is larger than the size of a context needed for humans to
exhibit some behavior, it means more if the language model does not reproduce or predict
that behavior. In that case, the language model would have had the capacity for it, yet it did
not capture the pattern in the data.
One could argue that if the training data for the languagemodel and the corpus onwhich the
human behavior measures were collected were different enough, the language model would

104 9. Perplexity is sometimes dissociated from fit to psychometric data

also not be able to capture the patterns that it needs as easily. Again, ZuCo is the best dataset
for this, sincemost large languagemodels are trained on web text1. Since ZuCo is composed
of movie reviews and Wikipedia articles, ZuCo is an especially close match to the training
data, rather uncontroversially closer than Provo, PSC, Dundee, and GECO.

In the grammaticality Maze task (G-Maze) (Forster, Guerrera, and Elliot, 2009), sentences
are presented word-by-word as a sequence of forced choices between two alternatives, only
one of which continues the sentence grammatically. If the participant successfully navigates
the “Maze” by choosing the correct word from each pair, the selected words form a coherent
sentence. Figure 9.3 shows an example G-Maze item.

The x&x&x

went man

evaluated sink

the hosed

while carefully

wri8en river

some9me. essay.

Figure 9.3: Example trial structure of G-Maze task. Sentences are presented word by word
as a sequence of forced choices between two alternatives, only one of which con-
tinues the sentence grammatically.

I obtained a dataset of English G-Maze response times from Witzel, Witzel, and Forster
(2012). This dataset contains 144 sentences, with 8 additional practice sentences that I dis-
carded. I also discarded the first and last words of each sentence resulting in a final total of
1714 words. Witzel, Witzel, and Forster (2012) established that Maze response times are re-
flective of processing while getting rid of spillover effects. However, they did not comment
on whether the response times also depend on the foil word at each choice, so I was sure to
test this in my models.

1While Wikipedia was removed from the training data for GPT-2 (Radford et al., 2019), Wiki-style writing
is ubiquitous on the internet. So, it is likely to still be represented in the model.

9.1. Background and common methods 105

9.1.3 Previous frameworks for evaluating language models

A linking hypothesis links a behavior measure to a theoretical or mathematical concept.
Especially under the Prediction Hypothesis as discussed in Section 9.1.1, there is an argu-
ment that the language model is completing a task similar to reading as measured by an eye-
tracker. Admittedly, the G-Maze task is less natural and more complicated than eye-tracked
reading. However, it is plausible that the G-Maze task must comprise at least the same el-
ements as natural reading because the participant must identify the true word and the foil
word, and they must integrate both candidates enough with the previous context that they
can decide which word is the correct continuation of the sentence. As low surprisal facili-
tates reading, I formally assume that some of the variance in the three eye-trackingmeasures
and in G-Maze response times can be attributed to surprisal. Of course, I accept that there
are other factors at play as well, and take on the responsibility to address those other factors
in my models so that any interference with the effects of interest is diminished.
The procedure in Demberg and Keller (2008) became a common starting point for this kind
of careful analysis of eye-tracking data. They noted that theremay be special behaviors at the
first word of a sentence (sentence-initial word) and at the last word of a sentence (sentence-
final word). I propose that as an example, while reading the sentence-initial word, perhaps
the reader is still getting situated and the eyes move differently because of this. Similarly,
at the end of the sentence, it is possible that the participant knows that they need to do
something extra to move on to the next trial, and their eyes could move differently because
of that. So, Demberg and Keller (2008) removed these words from the analysis. I adopted
this in my work, too.
Other best practices included centering and scaling the data, log transformation if a his-
togram revealed that the data were skewed, and pruning insignificant predictors using a test
based on the Akaike Information Criterion. Also, Hollenstein et al. (2021b) suggested scal-
ing the dependent variable such that its values ranged from 0 to 100. That way, the mean
absolute error could be more easily interpreted as a percent error and could be subtracted
from 100 to give a notion that they called prediction “accuracy”. Especially as this scaling of
the dependent variable facilitated the convergence of my models, I adopted all of these best
practices.
Goodkind and Bicknell (2018) presented a collection of very positive results concerning
the interplay between FPRTs and language model surprisals. They trained n-grams up to
n = 5, an LSTM, and linearly interpolated the LSTM with the 5-gram all on the One Bil-
lion Word Benchmark (Chelba et al., 2013). They evaluated on FPRTs from the Dundee
corpus Kennedy and Pynte (2005) and preprocessed that data in a way similar to Demberg
and Keller (2008). They analyzed seven languagemodel configurations and these seven data
points exhibited amonotonic behavior in the expected negative direction. Themonotonicity
led to an incredibly largeR2 value. They also noted that their LSTM was substantially better
than the 5-gram in terms of perplexity, but on its own, it did not predict reading times all
that much better. I interpret this to be an early indication of the language model divergence:

106 9. Perplexity is sometimes dissociated from fit to psychometric data

for the most part the psychometric predictive power and the perplexity have a negative re-
lationship, but the Goodkind and Bicknell (2018) data already showed an attenuation of the
negativity.
Building on Goodkind and Bicknell (2018), Wilcox et al. (2020) argued that improving
within some language model architecture correlates with an improvement in psychomet-
ric predictive power, but found little pattern among architectures. They, too, argued against
the psychometric power of the LSTM architecture: “For any given perplexity, deep Trans-
former models and n-gram models generally show superior psychometric predictive power
over LSTM or structurally supervised neural models”. They varied “inductive bias”, which is
how much syntactic structure the network uses, and amount of training data. They evalu-
ated on FPRTs from theDundee corpus (Kennedy and Pynte, 2005) and a self-paced reading
corpus. They expanded the syntactic knowledge frombinary (hierarchical or not) to a range.
This rangewas not predictive of psychometric predictive power after accounting for perplex-
ity. The overall relationship between fit to FPRTs and perplexity roughly looked exponential
in the low perplexities and linear in the high perplexities. They found that syntactic gener-
alization score and perplexity were related, but the residual syntactic generalization score
after perplexity had no clear relationship with residual predictive power.
Somewhat at odds with Wilcox et al. (2020), Eisape, Zaslavsky, and Levy (2020) argued that
their LSTMmodel correlatedmore highly with FPRT than othermodels with lower perplex-
ity. They used the Provo corpus (Luke and Christianson, 2018) because it has cloze comple-
tions and eye tracking data on the same stimuli. Supported by findings fromLuke andChris-
tianson (2018), they pointed out that cloze predictions are too harsh. Humans probably
“makemany diffuse bets at multiple linguistic levels”. Luke and Christianson (2018) referred
to this as “partial match”, e.g. correct part of speech but wrong word. Eisape, Zaslavsky, and
Levy (2020) considered 5 LM architectures: 5-gram, LSTM, GPT-2, Transformer-XL, and
XLNet. They trained the n-gram and the LSTM on WikiText-103. Transformer-XL was
fine-tuned on WikiText-103. Eisape, Zaslavsky, and Levy (2020) obtained the other two
from huggingface, so they were trained on their usual datasets.
They had three main contributions: 1) comparing LM surprisal distributions against cloze
distributions, 2) comparing psychometric predictive power for FPRTs against perplexity,
and 3) proposing Cloze Distillation as a way to “improve” the language models for predict-
ing the FPRTs. Cloze Distillation interpolates in the KL-divergence between the surprisal
distribution and the cloze distribution to the LM training objective. Most of the results that
Eisape, Zaslavsky, and Levy (2020) reported showed insignificant and / or very small ef-
fect sizes. But, since Smith and Levy (2011) already made it known that cloze distributions
and LM surprisal distributions are different, it was to a degree expected that including cloze
information at least nominally improved psychometric predictive power.
Oh and Schuler (2023) presented a linguistic explanation for the results in Oh, Clark, and
Schuler (2022), which, in turn, expanded upon the results from Oh, Clark, and Schuler
(2021). The original experiment for Oh, Clark, and Schuler (2021) argued for a morphology
component for predicting FPRTs. But along the way, as explained in Oh, Clark, and Schuler

9.1. Background and common methods 107

(2022), they found that “experiments using Transformer-basedGPT-2models of varying ca-
pacities that share the same primary architecture and training data show a surprising neg-
ative correlation between parameter count and fit to self-paced reading and eye-tracking
data. In other words, Transformer models with fewer parameters were able to make better
predictions when the training data was held constant.” So, whileWilcox et al. (2020) system-
atically varied the architecture and the amount of training data while keeping the number of
parameters constant, Oh, Clark, and Schuler (2022) held the architecture and training data
constant while varying the number of parameters.
I consider this result to be one of the most promising sources of evidence for the language
model divergence. My work verifies it, identifies other behavior measures for which the
pattern exists, controls for factors not addressed in their publications (this chapter), and
based on a more controlled experimental design (Chapter 10), argues for a different and
stronger explanation than the one provided in Oh and Schuler (2023).
Their primary linear mixed effects models of FPRT had baselines of word length, position
in sentence, saccade length, and whether or not the previous word was fixated. I adopted all
of these except saccade length and additionally included word frequency. They mentioned
that they, too, explored including word frequency, but it did not meaningfully change the
results.
Overall, they found very robust results that as the model size grew, the perplexity decreased
(as expected) but the psychometric predictive power decreased aswell (not expected). There-
fore, when plotting psychometric predictive power versus perplexity, the relationship was
positive.
One of themain arguments fromOh and Schuler (2023) was that larger Transformermodels
have more capacity to capture specialized knowledge, so they were more likely to underes-
timate the surprisals for nouns and verbs. They computed statistics over the raw language
model surprisals and found that the largest discrepancies between surprisals for small mod-
els and for large models were on nouns and verbs.
Based on this, I hypothesized that if the explanation from Oh and Schuler (2023) is correct,
by introducing two new binary variables in the model, one for whether the word is a noun
(NOUN) and one for whether the word is a verb (VERB), and allowing these variables to
interact with the language model surprisals, the unexpected positive relationship between
psychometric predictive power and perplexity would lessen. Instead, it grew, as reported in
Section 9.4.

9.1.4 Survey of successful predictors

Demberg and Keller (2008) mentioned word frequency (wf), word length (wl), position
in sentence (x), and frequency of the previous word (pf) as “low-level” variables, and they
mentionedwhether the previouswordwas fixated, launch distance (characters), and landing
position (character) as “oculomotor” variables. They argued that all of these, plus participant
variance must be accounted for. I included the first three low-level variables, but previous

108 9. Perplexity is sometimes dissociated from fit to psychometric data

word frequency was not significant in the models. I included a variable C(skip) that was
True if the previous word was skipped and False otherwise. Essentially, this variable sets a
parameter for how much time to add to the predicted variable (FFD, FPRT, or TFT) if the
previous word was skipped. I did not include launch distance and landing position as these
were not always recorded. This is likely because in Demberg and Keller (2008) and several
subsequent studies, these were not always significant.
Many works proposed novel features that arguably improved fit to reading times for lan-
guage models. These included a “cumulative n-gram” (van Schijndel and Schuler, 2015),
PCFG surprisal, (van Schijndel and Schuler, 2015), accumulation for skipped words (van
Schijndel and Schuler, 2016), entropy and entropy reduction (van Schijndel and Schuler,
2017), an adaptation mechanism (van Schijndel and Linzen, 2018), lookahead information
gain (Aurnhammer and Frank, 2019), saliency (Hollenstein and Beinborn, 2021), morpho-
logical features (Oh, Clark, and Schuler, 2021), and coreference information (Jaffe, Shain,
and Schuler, 2020; Jaffe, Oh, and Schuler, 2021). However, the point of these works was to
model the reading times as accurately as possible, while my work aims to characterize how
different language models explain different amounts of variance in the behavior measures.
As such, I argue that features that could reasonably be included in the language model sur-
prisals (many of the features listed above) should not be separated out given my purpose
unless they have a clear reason for inclusion. For example, language models look up en-
tire tokens at once, so they do not interface with word length the same way as humans do.
Similarly, word frequency provides the easiest kind of surprisal information, so it might be
worthwhile to see what else the language model can provide beyond frequency informa-
tion. Also, including word frequency is a best practice for eye-tracking analyses, according
to Hollenstein, Barrett, and Beinborn (2020).
Salicchi, Xiang, and Hsu (2022) won the CMCL 2022 Shared Task on Multilingual and
Crosslingual Prediction of Human Reading Behavior (Hollenstein et al., 2022a). They used
sentence position, word length, word frequency, previous word length, previous word fre-
quency, whether the first letter was capitalized, whether the word was in all capitals, the
syllable count, and GPT-2 (monolingual) surprisal to predict TFTs averaged over partici-
pants. As such, the data did not allow them to use linear mixed effects models, but they
tried all 36 two-way interactions, plus the 9 features and an intercept. So, there were 46 pre-
dictors in all. They also tried 9 different regressors. I claim that the extremely large number
of configurations was an appropriate strategy for a shared task, especially one that had a test
set in a mystery language. But for my purpose, it is best to have a small number of mod-
els with the features selected not for the absolute highest accuracy, but rather for making
the most powerful and scientifically rigorous conclusions about the relationship between
psychometric predictive power and specific language models.

9.1. Background and common methods 109

For all of my experiments in this chapter, I obtained word-by-word surprisals according
to the methods described in Chapter 8. For the English corpora (Provo, ZuCo, G-Maze),
I obtained frequency information from the Corpus of Contemporary American English
(Davies, 2008), and I trained 1-gram, 2-gram, 3-gram, 4-gram and 5-gram models with
modified interpolated Kneser-Ney smoothing (Kneser and Ney, 1995) on the 101,425,658
token, 267,735 type WikiText-103 (Merity et al., 2016) training set using KenLM (Heafield,
2011; Heafield et al., 2013). Additionally, I obtained the LSTM fully pre-trained from Gu-
lordava et al. (2018), which according to their supplementarymaterials, is a two-layermodel
with a hidden and embedding size of 650, a batch size of 128, a dropout rate of 0.2, and a
learning rate of 20.0, trained for 40 epochs. Lastly, I obtained the language models from
three GPT families in various sizes: GPT-2 (Radford et al., 2019), GPT-Neo (Black et al.,
2021), andOPT (Zhang et al., 2022). When I refer to these models, their numbers of param-
eters appear after a hyphenwith “M” signifyingmillion and “B” signifying billion. Therefore,
Neo-6B is the 6 billion parameter version of GPT-Neo, and this particular size is also called
GPT-J.
For German (PSC), Kliegl et al. (2004); Kliegl, Nuthmann, and Engbert (2006) reported that
they packaged frequency information with the dataset based on the CELEX corpus (Baayen,
Piepenbrock, and Gulikers, 1995). Further, I focused on several pre-trained Transformer
models as the point of analyzing PSCwas to show that the English andGerman eye-tracking
data related to Transformer model surprisals in a reasonably similar way. The Transformer
models that I tested included two BERT (Devlin et al., 2018) models, one (BERT) native to
huggingface, and another (BERTd) released by the Digitale Bibliothek Münchener Digital-
isierungs Zentrum (DBMDZ).Then, I usedGerPT2 (Minixhofer, 2020) andGPT2X (Minix-
hofer, Paischer, and Rekabsaz, 2022) in two sizes each. These models were initialized with
different sizes of English GPT-2 and adapted to German. Finally, I used a pair of language
models initialized from the small version of English GPT-2 from Stefan Schweter and the
DBMDZ. One (GPT2-SM-50G) was trained using a 50G German training corpus and the
other (GPT2-SM-90G) was trained using a 90G training corpus.
All models were freely available on the huggingface hub. I assert that perplexity differences
within GPT families are significant and refer to significance testing in the original papers
(Radford et al., 2019; Black et al., 2021; Zhang et al., 2022; Minixhofer, 2020; Minixhofer,
Paischer, and Rekabsaz, 2022). Part of speech tags were packaged with Provo. I word tok-
enized the other corpora (ZuCo, PSC, English G-Maze) using the Natural Language Toolkit
(Bird, Klein, and Loper, 2009), performed part of speech tagging using the Stanford tagger
(Toutanova et al., 2003), and then manually detokenized, aligned, and corrected the output.
I collapsed more fine-grained parts of speech into nouns, verbs, and other.

110 9. Perplexity is sometimes dissociated from fit to psychometric data

9.2 Coefficients for linear mixed effects models

2 1 0 1 2 3

C(skip)

NOUN

VERB

wl

wf

wl:wf

x

LM

NOUN:LM

VERB:LM

C
oe

ff
ic

ie
nt

s

Coefficients for Provo TFT POS linear mixed effects models with 95% confidence intervals

LMs
1
KN2
KN3
KN4
KN5
LSTM
GPT-2-SM
GPT-2-MD
GPT-2-LG
GPT-2-XL
Neo-125M
Neo-1.3B
Neo-2.7B
Neo-6B
OPT-125M
OPT-350M
OPT-1.3B
OPT-2.7B
OPT-6.7B
OPT-13B

6 4 2 0 2 4

C(skip)

NOUN

VERB

wl

wf

wl:wf

x

LM

NOUN:LM

VERB:LM

C
oe

ff
ic

ie
nt

s

Coefficients for ZuCo TFT POS linear mixed effects models with 95% confidence intervals

LMs
1
KN2
KN3
KN4
KN5
LSTM
GPT-2-SM
GPT-2-MD
GPT-2-LG
GPT-2-XL
Neo-125M
Neo-1.3B
Neo-2.7B
Neo-6B
OPT-125M
OPT-350M
OPT-1.3B
OPT-2.7B
OPT-6.7B
OPT-13B

Figure 9.4: Coefficients for linear mixed effects models of TFTs in the Provo corpus (upper)
and the ZuCo corpus (lower).

Figure 9.4 and Figure 9.5 show the coefficients for the “best” linearmixed effects models that
I fitted on the reading behavior measures. By “best” these models for the most part had sig-
nificant predictors and they all converged. For instance, Imay have included an insignificant
predictor for one corpus because it was significant for another, or I included it because it was
involved in a significant interaction. I started with all baseline predictors from the literature
and their two way interactions, but the word length : frequency interaction was the only one
that was usually significant across language models and corpora. I explicitly tested previous

9.2. Coefficients for linear mixed effects models 111

4 2 0 2 4 6

C(skip)

NOUN

VERB

wl

wf

wl:wf

x

LM

NOUN:LM

VERB:LM
C

oe
ff

ic
ie

nt
s

Coefficients for PSC TFT POS linear mixed effects models with 95% confidence intervals

LMs
1
BERT
BERTd
GerPT2-SM
GerPT2-LG
GPT2X-SM
GPT2X-XL
GPT2-SM-50G
GPT2-SM-90G

4 2 0 2 4 6 8

NOUN

VERB

fl

wl

fl:wl

wf

x

LM

NOUN:LM

VERB:LM

C
oe

ff
ic

ie
nt

s

Coefficients for English Maze_response_time POS linear mixed effects models with 95% confidence intervals

LMs
1
KN2
KN3
KN4
KN5
LSTM
GPT-2-SM
GPT-2-MD
GPT-2-LG
GPT-2-XL
Neo-125M
Neo-1.3B
Neo-2.7B
Neo-6B
OPT-125M
OPT-350M
OPT-1.3B
OPT-2.7B
OPT-6.7B
OPT-13B

Figure 9.5: Coefficients for linear mixed effects models of TFTs in the PSC corpus (upper)
and the English G-Maze corpus (lower).

word length, previous word frequency, and previous word surprisal for eye-tracking. These
predictors often yielded coefficients that were not significant and often prevented the linear
mixed effects models from converging, so I chose to exclude them. Also, these were not in-
cluded in the models described in Oh and Schuler (2023) and I designed these experiments
to be as comparable to theirs as possible.
Aside from the position in sentence variable (x) these coefficients were quite consistent
across corpora and languages. Figure 9.4 and Figure 9.5 both show a trend in which as
the size of the Transformer model grows, the coefficient learned for its surprisal becomes
smaller. Goodkind and Bicknell (2018) did a similar analysis, and just like with mine, the
distinctions were not significant.
For the G-Maze data, I included the length of the foil word (fl). I also explicitly tested the
frequency of the foil word, and the surprisal of the foil word, but these led to insignificant
coefficients and convergence failures.

112 9. Perplexity is sometimes dissociated from fit to psychometric data

9.3 G-Maze response time >TFT >FPRT >FFD

0 5 10 15 20 25 30 35
Percent (%)

OPT-13B
OPT-6.7B
OPT-2.7B
OPT-1.3B

OPT-350M
OPT-125M

Neo-6B
Neo-2.7B
Neo-1.3B

Neo-125M
GPT-2-XL
GPT-2-LG

GPT-2-MD
GPT-2-SM

LSTM
KN5
KN4
KN3
KN2

1

Percent variance explained for predictors of Provo FFD linear mixed effects models

Predictors
C(skip)
wl
wf
wl:wf
x
LM
Participants

0 5 10 15 20 25 30 35
Percent (%)

OPT-13B
OPT-6.7B
OPT-2.7B
OPT-1.3B

OPT-350M
OPT-125M

Neo-6B
Neo-2.7B
Neo-1.3B

Neo-125M
GPT-2-XL
GPT-2-LG

GPT-2-MD
GPT-2-SM

LSTM
KN5
KN4
KN3
KN2

1

Percent variance explained for predictors of Provo FPRT linear mixed effects models

Predictors
C(skip)
wl
wf
wl:wf
x
LM
Participants

Figure 9.6: A comparison of the percent of variance that each predictor explains for models
of FFD (upper) and FPRT (lower). The language model appears in brown and
the random variation in the participants appears in grey.

Recall that I hypothesized that TFTs were the most appropriate of the three eye-tracking
measures to compare against language model surprisals. However, as reviewed in Sec-
tion 9.1.3, the literature very clearly favored working with FPRTs, perhaps because they are a
middle ground between FFDs andTFTs. I built linearmixed effectsmodels of all four behav-
ior measures addressed in this chapter, computed analysis of variance tables, and explored
how much variance the language models explained for the behavior measures.
As shown in Figure 9.6, Figure 9.7, and Table 9.2, The language models explained signifi-
cantly more variance in G-Maze response times than in TFTs, they explained significantly
more variance in TFTs than in FPRTs, and they explained significantly more variance in
FPRTs than in FFDs. The differences are quite easy to see in the figures (informally, how big
the brown-colored segments are) because the results are so strong. Namely, even for the best
of the eye-tracking measures (TFT), the language models explain less than 1% of the vari-
ance. But they explain nearly 5% of the the G-Maze response times. Although not covered
in the figures, I also tested the German eye-tracking dataset and its analogous percentages
were similarly small and ordered the same way among the three behavior measures.

9.3. G-Maze response time >TFT >FPRT >FFD 113

0 5 10 15 20 25 30 35
Percent (%)

OPT-13B
OPT-6.7B
OPT-2.7B
OPT-1.3B

OPT-350M
OPT-125M

Neo-6B
Neo-2.7B
Neo-1.3B

Neo-125M
GPT-2-XL
GPT-2-LG

GPT-2-MD
GPT-2-SM

LSTM
KN5
KN4
KN3
KN2

1

Percent variance explained for predictors of Provo TFT linear mixed effects models

Predictors
C(skip)
wl
wf
wl:wf
x
LM
Participants

0 5 10 15 20 25 30 35
Percent (%)

OPT-13B
OPT-6.7B
OPT-2.7B
OPT-1.3B

OPT-350M
OPT-125M

Neo-6B
Neo-2.7B
Neo-1.3B

Neo-125M
GPT-2-XL
GPT-2-LG

GPT-2-MD
GPT-2-SM

LSTM
KN5
KN4
KN3
KN2

1

Percent variance explained for predictors of English Maze_response_time linear mixed effects models

Predictors
fl
wl
wf
wl:wf
x
LM
Participants

Figure 9.7: A comparison of the percent of variance that each predictor explains for models
of TFT (upper) andG-Maze response time (lower). The languagemodel appears
in brown and the random variation in the participants appears in grey.

Measure 1 Measure 2 Paired t-test p-value
Provo FPRTs Provo FFDs t(18) = 19.3 p = 1.8 · 10−13

Provo TFTs Provo FPRTs t(18) = 14.0 p = 4.2 · 10−11

G-Maze RTs Provo TFTs t(18) = 19.2 p = 2.0 · 10−13

Table 9.2: Hypothesis testing on whether language models explain significantly more vari-
ance in one measure than another.

I understand that conventional preferences for methodologies do not change quickly, but
the results of my experiment are very important because they motivate a switch that could
keep scientists from drawing conclusions based on significant, but problematically small
effects. Yes, the best practices of hypothesis testing protect the rigor of scientific inference,
but much meaning is still lost in the case that one finds that one number is significantly
larger than another, by an essentially negligible amount. Despite the loss of comparability,
this result motivates my choice to focus on G-Maze response times in later chapters. I also
recommend using TFTs instead of FPRTs or FFDs for any future studies that relate eye-
tracking and language models.

114 9. Perplexity is sometimes dissociated from fit to psychometric data

9.4 Dedicated handling of part of speech does not reduce
the dissociation

30 40 50 60 70 80 90
Perplexity (PPL)

520

540

560

580

600

620

640

660

C
ha

ng
e

in
 lo

g
lik

el
ih

oo
d

(
LL

)

Provo TFT psychometric predictive power vs perplexity

LMs
GPT-2-SM
GPT-2-MD
GPT-2-LG
GPT-2-XL
Neo-125M
Neo-1.3B
Neo-2.7B
Neo-6B
OPT-125M
OPT-350M
OPT-1.3B
OPT-2.7B
OPT-6.7B
OPT-13B

30 40 50 60 70 80 90
Perplexity (PPL)

520

540

560

580

600

620

640

660

C
ha

ng
e

in
 lo

g
lik

el
ih

oo
d

(
LL

)

Provo TFT POS psychometric predictive power vs PPL

LMs
GPT-2-SM
GPT-2-MD
GPT-2-LG
GPT-2-XL
Neo-125M
Neo-1.3B
Neo-2.7B
Neo-6B
OPT-125M
OPT-350M
OPT-1.3B
OPT-2.7B
OPT-6.7B
OPT-13B

50 60 70 80 90 100 125 150
Perplexity (PPL)

640

650

660

670

680

690

700

710

C
ha

ng
e

in
 lo

g
lik

el
ih

oo
d

(
LL

)

ZuCo TFT psychometric predictive power vs perplexity

LMs
GPT-2-SM
GPT-2-MD
GPT-2-LG
GPT-2-XL
Neo-125M
Neo-1.3B
Neo-2.7B
Neo-6B
OPT-125M
OPT-350M
OPT-1.3B
OPT-2.7B
OPT-6.7B
OPT-13B

50 60 70 80 90 100 125 150
Perplexity (PPL)

670

680

690

700

710

720

730

740

C
ha

ng
e

in
 lo

g
lik

el
ih

oo
d

(
LL

)

ZuCo TFT POS psychometric predictive power vs PPL

LMs
GPT-2-SM
GPT-2-MD
GPT-2-LG
GPT-2-XL
Neo-125M
Neo-1.3B
Neo-2.7B
Neo-6B
OPT-125M
OPT-350M
OPT-1.3B
OPT-2.7B
OPT-6.7B
OPT-13B

Figure 9.8: Scatterplots of psychometric predictive power versus perplexity. The right pan-
els correspond to linear mixed effects models that incorporate categorical pre-
dictors and interactions for part of speech. The left panels correspond to linear
mixed effects models that do not. The top panels are for the Provo corpus and
the bottom panels are for the ZuCo corpus.

My results on Provomore than on ZuCo replicated the findings fromOh, Clark, and Schuler
(2022). But it is noteworthy that with some GPT families, for example GPT-2 on ZuCo, the
positive relationship occurred robustly.
As explained in Section 9.1.3, one of my novel contributions in this chapter is introducing
categorical variables for part of speech into the linear mixed effects models. I hypothesized
that if indeed the discrepancies between large and small models within the same family
hinged on part of speech, then dedicated handling would lessen the effect.
However, the psychometric predictive power gap between the small models and the large
models increased significantly (paired t-test t(8) = 2.7, p = 0.028) when I introduced
dedicated handling of part of speech.

9.4. Dedicated handling of part of speech does not reduce the dissociation 115

200 300 400 500 600 700
Perplexity (PPL)

600

700

800

900

1000
C

ha
ng

e
in

 lo
g

lik
el

ih
oo

d
(

LL
)

PSC TFT psychometric predictive power vs perplexity

LMs
BERT
BERTd
GerPT2-SM
GerPT2-LG
GPT2X-SM
GPT2X-XL
GPT2-SM-50G
GPT2-SM-90G

200 300 400 500 600 700
Perplexity (PPL)

300

400

500

600

700

800

C
ha

ng
e

in
 lo

g
lik

el
ih

oo
d

(
LL

)

PSC TFT POS psychometric predictive power vs PPL

LMs
BERT
BERTd
GerPT2-SM
GerPT2-LG
GPT2X-SM
GPT2X-XL
GPT2-SM-50G
GPT2-SM-90G

60 65 70 75 80
Perplexity (PPL)

640

660

680

700

720

740

C
ha

ng
e

in
 lo

g
lik

el
ih

oo
d

(
LL

)

Maze RT psychometric predictive power vs perplexity

LMs
GPT-2-SM
GPT-2-MD
GPT-2-LG
GPT-2-XL
Neo-125M
Neo-1.3B
Neo-2.7B
Neo-6B
OPT-125M
OPT-350M
OPT-1.3B
OPT-2.7B
OPT-6.7B
OPT-13B

60 65 70 75 80
Perplexity (PPL)

540

560

580

600

620

640

660

C
ha

ng
e

in
 lo

g
lik

el
ih

oo
d

(
LL

)

Maze RT POS psychometric predictive power vs perplexity

LMs
GPT-2-SM
GPT-2-MD
GPT-2-LG
GPT-2-XL
Neo-125M
Neo-1.3B
Neo-2.7B
Neo-6B
OPT-125M
OPT-350M
OPT-1.3B
OPT-2.7B
OPT-6.7B
OPT-13B

Figure 9.9: Scatterplots of psychometric predictive power versus perplexity. The right pan-
els correspond to linear mixed effects models that incorporate categorical pre-
dictors and interactions for part of speech. The left panels correspond to linear
mixed effects models that do not. The top panels are for the PSC corpus and the
bottom panels are for the English G-Maze corpus.

LM Family Provo ZuCo G-Maze
No-POS POS No-POS POS No-POS POS

GPT-2 34 47 27 36 28 58
Neo 122 129 1 10 33 108
OPT 114 129 64 78 59 64

Table 9.3: These values give the positive difference between the “best” linear mixed effects
model and the “worst” for different families of GPT models analyzing different
corpora. The POS column corresponds to models that incorporate categorical
predictors and interactions for part of speech.

The positive relationship between psychometric predictive power and perplexity was not
really visible onPSC.However, I assert that thiswas due to the fact that therewere no families
of GPT language models for German available on the huggingface hub like there were for
English. But I did find the positive relationship on English G-Maze. The gap also widened
with dedicated handling of part of speech in this case, too.

116 9. Perplexity is sometimes dissociated from fit to psychometric data

9.5 Discussion and Conclusions

In this chapter, I explored the best predictors to include in linearmixed effectsmodels for the
purpose of analyzing the fit of language models to reading behavior measures. I found that
language models explain more variance in G-Maze response times (a less popular measure)
than in first pass reading times (the most popular measure). And, I showed a paradox for
the relationship between psychometric predictive power and perplexity: the relationship is
supposed to be positive due to different handling of nouns and verbs, but with dedicated
predictors and interactions for part of speech, the effect grew more robust.
A substantial limitation of this work is its dependence on the proper inclusion of baseline
predictors that correlatewith reading times. Perhaps in part because of this, Hollenstein et al.
(2021b) presented a contrasting way to evaluate Transformer models against eye-tracking
data. Namely, they simply averaged over the participants and fine-tuned their language
models to predict the reading times directly. I argue that the former method is preferable
because it quantifies how much “external” information comes in via the baselines, it handles
the participants separately as advocated by Demberg and Keller (2008), and Salicchi, Xiang,
andHsu (2022), thewinner of theCMCL2022 SharedTask onMultilingual andCrosslingual
Prediction of Human Reading Behavior (Hollenstein et al., 2022a), used the former method
as well. Lastly, Hollenstein et al. (2022b), a follow-up to Hollenstein et al. (2021b), claimed
that fine-tuning to the eye-tracking data encodes something so divorced from surprisal that
random initialization and initialization with state-of-the-art language model weights yield
comparable predictions of FFD, FPRT, and TFT.

Chapter 10

Computational evidence for the
divergence

Since in Chapter 9, I showed that language model (LM) surprisals explain more variance
in G-Maze response times than they do in eye-tracking reading times, there was particular
motivation to use G-Maze data to characterize further the relationship between perplexity,
psychometric predictive power, and number of parameters of a language model. Upon in-
specting the G-Maze dataset from Witzel, Witzel, and Forster (2012), most sentences were
in pairs whose one-word difference illuminated an ambiguity or meaning change. For ex-
ample, consider the following two versions of a sentence from this dataset:

(1) Amy will visit the man she worked with…
a. …[last month]… (adverbial phrase)
b. …[next month]… (adverbial phrase)

…, but she is nervous about it.

Since “visit” and “worked” are both verbs, an adverbial phrase in this position could, in the-
ory, modify either one. However, in version (1a), the adverbial phrase “last month” must
modify “worked”, since “will” places the “visit” event in the future. In version (1b), the ad-
verbial phrase “next month” must modify “visit”, since “worked” is in the past tense. In
linguistic terms, there is an attachment ambiguity, but the agreement features rule out one
of the two interpretations in each case.
Having two sentences differ so little in form and so much in meaning is quite powerful
for psycholinguistic analysis. But since the meanings of the sentences were manipulated
to be different, there is not even an expectation that the surprisals for the respective words
following the single-word difference between the sentences would be similar. If, instead, the
sentences had essentially the same message realized with slightly different encodings, the
differences in surprisal can be attributed to the encoding variation rather than a meaning
distinction.

118 10. Computational evidence for the divergence

Since most foundational work in this area (e.g. Rayner and Well, 1996; Kliegl et al., 2004;
Rayner et al., 2004; Drieghe, Rayner, and Pollatsek, 2005), manipulated meaning, it was not
abundantly clear before the work that my coauthors and I presented in Sikos et al. (2017)
that a pure encoding variation would be enough to manifest differences in human behavior.
But since my coauthors and I found those differences, the data from that paper became an
especially challenging test bed for evaluating humanness in language models.
Section 10.1 presents the novel dataset of G-Maze response times that my coauthors de-
signed and collected, as described in Sikos et al. (2017). In particular, I give some minute
details about how the data were collected, with an eye toward what might be important to
consider when using language models to predict these measurements. While I was not in-
volved in the data collection, I performed several language modeling experiments with this
data, including the ones in the original publication. This chapter covers two such experi-
ments. In Section 10.2.1, I describe how I curated a custom language model training corpus
to accompany the Sikos et al. (2017) dataset. Then in Section 10.2.2, I show how I used
this to compute highly accurate language model surprisals and illustrate the relationship
between psychometric predictive power and perplexity for the German G-Maze data. I hy-
pothesized that the relationship would be the same as in Chapter 9. But this ended up being
only partially true, due to material differences among the language models evaluated.
In Section 10.2.3, I describe how I trained a small BERT model from scratch using only my
custom language model training corpus. I evaluated changes in psychometric predictive
power over the course of training this model. Accordingly, the training data and the size of
the language model were constant throughout the experiment. Yet, psychometric predic-
tive power fell significantly after the first 10 training epochs. This result supports my theory
that optimizing for perplexity overfits the languagemodel with respect to psychometric pre-
dictive power. Therefore, I explain the partial dissociation between language model quality
(based on perplexity) and fit to psychometric data. I argue that optimizing for perplexity
allows the language model to capture statistically valid but inhuman patterns, and a larger
Transformer might be better at finding them.

10.1 A novel German G-Maze corpus
Consider the following examples:

(2) The journalist published… predictive context (pred)
a. …[the carefully written essay]. pre-nominal modification (pre)
b. …[the essay that was carefully written]. post-nominal modification (pos)

(3) The man evaluated… non-predictive context (non)
a. …[the carefully written essay]. pre-nominal modification (pre)
b. …[the essay that was carefully written]. post-nominal modification (pos)

The object of the main verb in all four examples is “essay” and all four examples say some-
how that the essay was “carefully written”. So, the so-called object noun phrase (the words

10.1. A novel German G-Maze corpus 119

Context Encoding Example

Predictive Post-nominal Der Journalist veröffentlichte den Essay, der sorgfältig verfasst worden war, unter Einbeziehung des größeren Kontextes.
“The journalist published the essay that was carefully written, taking into account the larger context.”

Predictive Pre-nominal Der Journalist veröffentlichte den sorgfältig verfassten Essay unter Einbeziehung des größeren Kontextes.
“The journalist published the carefully written essay, taking into account the larger context.”

Non-predictive Post-nominal Der Mann bewertete den Essay, der sorgfältig verfasst worden war, unter Einbeziehung des größeren Kontextes.
“The man evaluated the essay that was carefully written, taking into account the larger context.”

Non-predictive Pre-nominal Der Mann bewertete den sorgfältig verfassten Essay unter Einbeziehung des größeren Kontextes.
“The man evaluated the carefully written essay, taking into account the larger context.”

Table 10.1: Example stimulus item in four conditions with approximate English transla-
tions. The object nouns are bolded and the modifier phrases are underlined.

within the brackets) in all four examples has arguably the same meaning. In (2a) / (3a) the
modifier “carefully written” occurs before the nominal “essay” (pre-nominal modification)
and in (2b) / (3b) the modifier “carefully written” occurs after the nominal “essay” (post-
nominal modification). So, this alternation achieves the goal of having different encodings
of the same meaning. While there is some meaning difference between (2) and (3), it is still
arguably much less than the versions of (1). My coauthors crafted (2) such that the subject
and verb of the sentence constitute, by semantic association, an especially likely context for
the object (predictive context). In contrast, the subject and verb in (3) are supposed to be
more neutral, such that the object does not get as likely of a context (non-predictive context).

Materials Mycoauthors constructed 48 sets of sentences, inGerman, following a paradigm
that “crosses” the context and the modifier encoding. By crossing these two experimental
manipulations, all four possible combinations are obtained. Table 10.1 gives the context,
encoding of the modifiers, the German sentence, and the English translation for the sen-
tences corresponding to the examples that I introduced before. Importantly, my coauthors
avoided choosing highly expected object nouns (e.g., Artikel, “article”) to increase the possi-
bility of detecting behavior differences between the predictive / pre-nominal and predictive
/ post-nominal conditions.
Four counterbalanced listswere constructed from thesematerials according to a Latin Square
design such that each list contained 12 items in each condition, but no item appeared more
than once in the same list. An additional 48 sentences with the same structures as above,
but containing highly predictable object nouns, were constructed as fillers (e.g., Der Schnei-
der zerschnitt den stark gemusterten Stoff am Mittwoch., “The tailor cut the heavily patterned
fabric on Wednesday.”). Half of the filler sentences contained pre-nominal modification of
the object noun and the other half contained post-nominal modification. No object nouns
were repeated across experimental or filler items.

120 10. Computational evidence for the divergence

Cloze probability and contextual constraint An offline cloze completion study was con-
ducted to confirm that object nouns were more expected following predictive than non-
predictive contexts, but were not highly expected in either context. A group of 58 native
German speakers (age: µ = 22.0, σ = 2.9) were presented with sentence fragments from
the 48 experimental items described above. Fragments contained only the contexts, followed
by a blank (e.g., Der Mann bewertete ; Der Journalist veröffentlichte). Predictive
and non-predictive contexts were counter-balanced across two lists. Participants were asked
to fill in the blank with the first determiner–noun combination that came to mind. Cloze
probabilities were computed as the percentage of participants who provided the experimen-
tal object noun for a particular item. As expected, object nouns had low cloze probabilities
in both contexts but were reliably more expected following predictive (cloze: µ = 0.06,
σ = 0.18) than non-predictive contexts (cloze: µ = 0.00, σ = 0.01), t(47) = −2.32,
p < .05.
The percentage of the most frequently occurring response to each sentence fragment in the
cloze test was also used to assess the contextual constraint of predictive and nonpredic-
tive contexts. As expected, the mean constraint of predictive contexts was reliably greater
(51.3%) than that of the non-predictive contexts (21.3%), t(47) = −8.46, p < .001.

Participants A separate group of 27 native German speakers (age: µ = 24.0, σ = 2.6)
with normal or corrected to normal vision and recruited from the Saarland University com-
munity navigated G-Mazes based on the materials described before. They were compen-
sated 8€ for their participation. The three participants who did not successfully navigate at
least 70% of G-Mazes in all experimental conditions were excluded. Each participant only
saw one of the four context / encoding condition for a given item (sentence set).

Procedure Participants were randomly assigned to a stimulus list (6 per list). TheG-Maze
task was implemented in E-prime (Schneider, Eschman, and Zuccolotto, 2002). Each trial
began with two crosses (+) that remained on screen for 1000 ms, indicating where subse-
quent word pairs would appear. Each word in the sentence (except the first word) was then
presented together with a foil word,1 which was not a grammatical continuation of the sen-
tence. The first word in every sentence was paired with “x-x-x”. The presentation side (left,
right) was randomized such that the correct word appeared equally often on each side. Any
punctuation (i.e., comma, period) that appeared with a word also appeared with its foil.
Participants were instructed to choose as quickly and as accurately as possible the word that
best continued the sentence. Participants indicated their selection by pressing the left or

1Foils were created in a two-stage process. First, a custom Python script randomly selected a foil candidate
for each word in each experimental and filler item. Foil candidates were constrained such that they did not
appear in bigrams with the correct word at the previous position in the sentence within a large German corpus.
Second, each foil was then hand checked by at least two trained native-German linguists to ensure that it was
not a grammatical continuation of the sentence. The same foil was used for identical words (or derivationally
related words) across conditions.

10.2. Psychometric predictive power and perplexity 121

right button on a button box and the amount of time required for selecting the grammat-
ical continuation was recorded as the response time (RT). If the correct word was chosen,
the next pair of words appeared automatically. However, if a foil word was selected, nega-
tive feedback (Inkorrekt, “Incorrect”) was displayed and the trial was aborted. Once the end
of a sentence was reached, positive feedback (Korrect, “Correct”) was given. Participants
initiated each new trial by button press.
To confirm that participants read the sentences for meaning, a Yes / No comprehension
question appeared after one-third of the items. Half of the questions asked about the subject
noun and half about the object noun. The correct answer was Yes for 50% of questions.
Participants used the button box to respond. No feedback was given.
In order to familiarize participants with the task, five practice items (three with compre-
hension questions) were presented before the experiment began. Participants took approx-
imately 40 minutes to complete the experiment.

Completed G-Mazes Overall performance on the G-Maze task was high, with partici-
pants successfully navigating 85.6% (σ = 0.08) of experimental and filler items to comple-
tion. However, because the critical region of interest was the object NP, the RT analyses
reported below were conducted on all experimental items that were completed through at
least the end of the critical region (µ = 0.90, σ = 0.06).

Comprehension question accuracy Performance on the comprehension questions was
near ceiling (µ = 0.97, σ = 0.04), confirming that participants were reading the sentences
for meaning during the G-Maze task.

10.2 Psychometric predictive power and perplexity

In this section, I give a partial replication of some results from Chapter 9 using the German
G-Maze dataset and my accompanying language model training corpus. I hypothesized
that there is still generally a negative relationship between psychometric predictive power
and perplexity overall, but this relationship turns positive when comparing languagemodels
of different sizes within the same family. These experiments on the German G-Maze data
provide a pivotal refinement to the result that increasedTransformer size hurts psychometric
predictive power. Namely, the families of German Transformer language models were not
built the same way that the English ones were, and only one of them replicates the English
result. In the remainder of this section, I will describe how I made the custom training
corpus, how the German language models were made, how I constructed the linear mixed
effects models to predict the G-Maze response times, and what these intermediate results
show for the relationship between psychometric predictive power and perplexity.

122 10. Computational evidence for the divergence

10.2.1 A custom language modeling corpus

To ensure that the language models that I trained had the highest possible psychometric
predictive power, I curated a novel, custom training corpus with knowledge of the Ger-
man G-Maze data. Like WikiText-103 (Merity et al., 2016), my corpus was about 100MB
and based on Wikipedia. Since my corpus is in German, I refer to it in this work as the
dewiki corpus. Tomake the dewiki corpus, I started with a January 1, 2017 dump of German
Wikipedia, filtered the original XML dump using the tool WikiExtractor2, split the corpus
into sentences using the NLTK sentence splitter for German (Bird, Klein, and Loper, 2009),
and finally, preprocessed the resulting dataset. The preprocessing that I chose included low-
ercasing, replacing punctuation with space, replacing digits with NUM, removing empty
lines, replacing tabs with spaces, removing multiple spaces, removing multiple NUMs, re-
placing umlauts by their conventional character bigrams as shown in Table 10.2, and adding
sentence begin and end markers. Note that some of these choices, most notably the lower-
casing and the character bigrams were ideal for the current “small language model” setting,
but not so for training or fine-tuning a large language model. Specifically, this preprocess-
ing maximizes the chance that alternate forms of a word (e.g. with and without umlauts) are
considered together during training, but collapses distinctions that a large language model
can use to make its predictions more precise.

Original character Replacement bigram
ä ae
ö oe
ü ue
ß ss

Table 10.2: Four special characters in German and their replacements in the dewiki corpus.

At this point the corpus was still around 4GB. To reduce the size, I compiled a list of words
in the German G-Maze data that occurred below a certain frequency threshold and se-
lected only those sentences that contained at least three words overall and one word from
the “words of interest” list. Finally, by converting every type that occurred fewer than 15
times to “<unk>”, I restricted the vocabulary to 47,440 (down from 833,734). This, too, was
essential for a relatively quick language model training process.
The technique of using a “words of interest” list is somewhat nonstandard because once in-
dividual sentences are extracted from their Wikipedia articles, there is no context beyond a
single sentence. Recall that GPT language models can encode 1024 or 2048 tokens at one
time. And, Chapter 8 showed that perplexity vastly improves when the model has access
to full-size contexts. However, I argue that this was the right choice for the present experi-
ments because it offsets the deliberate choice that my coauthors made to select uncommon

2https://github.com/attardi/wikiextractor

https://github.com/attardi/wikiextractor

10.2. Psychometric predictive power and perplexity 123

100 101 102 103 104

Rank in sorted frequency list

100

101

102

103

104

105

Fr
eq

ue
nc

y

Zipf curve for custom dewiki training corpus

Figure 10.1: Zipf curve for the dewiki corpus.

words in German. In essence, my “words of interest” list ensured that whatever informa-
tion Wikipedia contained on these uncommon words ended up in my custom corpus. Also,
recall that most of the ZuCo corpus is also individually extracted sentences fromWikipedia.
One main argument against using this technique is that it could, in theory, result in an un-
natural distribution of tokens in the corpus. So, I will present one statistical analysis to show
that this did not happen. Namely, a fundamental result from statistical natural language
processing is Zipf ’s Law (Zipf, 1936, 1949), which states that there is a precise exponential
relationship between the number of times a type occurs (frequency) and its position (rank)
in a frequency ordered list. For example, since “the” is usually the most common type in an
English text, its position in the frequency ordered list is 1. “a” might have position 2, and all
of the types that occurred only once (predicted by Zipf ’s Law to be about half of the types
in the text) would appear at the end of the frequency ordered list. If the frequency and rank
are both log transformed, the relationship appears linear. Figure 10.1 gives the Zipf curve
for the dewiki corpus after restricting to sentences with at least one word of interest. The
curve is fully as expected. The bottom part of the curve changes shape as it does because I
computed the Zipf curve on just 80% of the data. The other 20% (reserved for testing and
evaluating the models only) contains the missing occurrences of those least frequent words
such that their total frequency is 15.

124 10. Computational evidence for the divergence

10.2.2 Results for n-gram, RNN, and pre-trained Transformers

The most important pair of language models that I evaluate in this section came from Ste-
fan Schweter and the Digitale Bibliothek Münchener Digitalisierungs Zentrum (DBMDZ),
made available on the huggingface hub. These language models were both initialized using
the small version of English GPT-2. Then, one (GPT2-SM-50G) was trained using a 50G
German training corpus and the other (GPT2-SM-90G) was trained using a 90G training
corpus. As such, these models, with the same architecture and different training data, are
not exactly siblings in the way the models were in Chapter 9, since those models had differ-
ent architectures and the same training data. Indeed, this is closer to the experimental setup
in Wilcox et al. (2020), but those were not initialized with an even larger corpus.
I also evaluated GerPT2 (Minixhofer, 2020) and GPT2X (Minixhofer, Paischer, and Rekab-
saz, 2022) in two sizes each. These models further developed the idea of using cross-lingual
information. GerPT2 was based on English GPT-2 small and large, while GPT2X was based
on English GPT-2 small and extra-large. These families used the same training data within
their families, but the cross-lingual transfer meant that the different sizes of these models
started their specialization to German from quite different initial states.
Additionally, I trained modified interpolated Kneser-Ney n-gram models (n = 2 to n = 5)
using KenLM (Heafield, 2011; Heafield et al., 2013), a recurrent neural network LM (RNN)
(Mikolov et al., 2011c), a long short-term memory (LSTM) LM (Sundermeyer, Schlüter,
and Ney, 2012), LSTM with dropout (LSTMd), and LSRC (Oualil et al., 2016b) all using my
custom training corpus dewiki. I used the version of German BERT native to huggingface
(pre-trained), and I also used another pre-trained one from DBMDZ (BERTd). As in previ-
ous chapters, I computed perplexity using the unmodified BERT models and psychometric
predictive power using versions for which I masked all tokens beyond the target token.
I obtained surprisals for the German G-Maze corpus, including the foil words in context,
using my code base described in Chapter 8. Then, I performed part of speech tagging using
the Stanford tagger (Toutanova et al., 2003) and manually corrected the tags. Importantly, I
retagged pronouns, which were quite rare in this dataset, as nouns. Finally, I fit linear mixed
effects models (mlms) on the surprisals to predict the G-Maze response times. As with the
mlms from Chapter 9, I included baseline predictors for whether the true (non-foil) word
was a noun (NOUN), whether the true word was a verb (VERB), the length of the true word
(wl), the length of the foil word (fl), the length interaction (wl:fl), the frequency of the true
word (wf), and the position in the sentence (x). Also like in Chapter 9, I allowed the noun
status and the verb status to interact with the language model surprisal (NOUN:LM and
VERB:LM). The frequency of the foil word prevented the mlms from converging, and even
the converged mlms usually did not assign a significant coefficients to it. I included random
intercepts for the participants and items3, and I included random slopes for wl, fl, and x.
Further random effects prevented the mlms from converging.

3A sentence in its four variants consituted one item.

10.2. Psychometric predictive power and perplexity 125

4 2 0 2 4 6 8

NOUN

VERB

fl

wl

fl:wl

wf

x

LM

NOUN:LM

VERB:LM

C
oe

ff
ic

ie
nt

s
Coefficients for German Maze_response_time POS linear mixed effects models with 95% confidence intervals

LMs
1
KN2
KN3
KN4
KN5
LSTM
LSTMd
LSRC
RNN
BERT
BERTd
GerPT2-SM
GerPT2-LG
GPT2X-SM
GPT2X-XL
GPT2-SM-50G
GPT2-SM-90G

Figure 10.2: Coefficients for linear mixed effects models of G-Maze response times in the
German G-Maze corpus.

Figure 10.2 shows the fitted coefficients for the mlms, which all converged. Note that the
main coefficient for GPT2-SM-90G is slightly larger than that for GPT2-SM-50G, but the
negative coefficients are also stronger for the part of speech and language model interaction
for GPT2-SM-90G than for GPT2-SM-50G. This means that dedicated handling of nouns
and verbs successfully brought the predictions closer together for the two language mod-
els in that family, something that explains some results from Oh and Schuler (2023), but
that I did not find evidence for in other datasets. Recall that in Chapter 9, the language
model coefficient was smaller for the larger language model in the family, and the interac-
tion terms were mixed. Consistently with the English G-Maze dataset, however, nouns had
mostly negative coefficients, meaning that their processing seems to have been facilitated by
something not covered by the language model. Indeed, this seems to be the case as well for
verbs in the German G-Maze data. In general, this does not support the idea from Oh and
Schuler (2023) that the language model, especially a larger Transformer, underestimates the
surprisals for nouns and verbs.
Also as with the English G-Maze data, the coefficients for position in the sentence were
positive, meaning that the human participants became slower as they progressed through
the sentence, but the language models did not get more surprised. This is to be expected
since the G-Maze task requires memory and there is more of the sentence to remember as
the sentence continues. The foil length and the length interaction coefficients were positive,
meaning that longer foils took longer to process as expected and that the human participants
needed disproportionately more time to make their response when the true word and the
foil were both very long. After accounting for these two variables, the true word length
coefficients were negative, which also happened on the English G-Maze dataset.

126 10. Computational evidence for the divergence

0 5 10 15 20 25 30 35
Percent (%)

GPT2-SM-90G
GPT2-SM-50G

GPT2X-XL
GPT2X-SM
GerPT2-LG
GerPT2-SM

BERTd
BERT
RNN

LSRC
LSTMd

LSTM
KN5
KN4
KN3
KN2

1

Percent variance explained for predictors of German Maze_response_time POS linear mixed effects models

Predictors
C(wPOS)
fl
wl
fl:wl
wf
LM
C(wPOS):LM
Participants

Figure 10.3: A comparison of the percent of variance that each predictor explains for mod-
els of G-Maze response time. The language model appears in brown and the
random variation in the participants appears in grey.

As an especially nice result, Figure 10.3 shows that the language model surprisals explained
clearly more than 5% of the variance in the G-Maze response times, independently of word
length, part of speech, and variation among human participants. Further, the GPT2-SM
model trained on less data explained more variance than the model trained on more data,
although this difference lessened after considering the interactions between parts of speech
and the language models.
Surprisingly, though, the opposite was true for the GPT2X models. I attribute this to the
possibility that the larger GPT2Xmodel receivedmore good cross-lingual information from
English, and this overpowered the negative effects relating to larger Transformer sizes.
Thepsychometric predictive power results shown in Figure 10.4 confirm the trends observed
in the variance explained results. Recall that if psychometric predictive power and perplex-
ity are in agreement, then the data should be negatively sloped. Indeed, the recurrent neural
networks (orange), BERT models (green), and the two GPT families based on cross-lingual
information (brown and purple) all suggest that improvements in perplexity were accom-
panied by improvements in humanness. Only with the two GPT2-SM models (red) is there
a positive slope. The difference of 26 nats between the log likelihoods for these two mlms
was clearly significant (p = 5.6 · 10−13). The n-gram models had a normal perplexity trend
(perplexity improves as n increases) but these gains did not correspond to improvements in
humanness. Overall, these results are most reminiscent of the Wilcox et al. (2020) results
in that there was little pattern among different architecture families, but within architecture
families, the results are quite consistent.
It is important to remember that these results do not directly conflict with those fromChap-
ter 9 because the language models within a family were related in different ways. There may
not be enough language model families to draw scientific conclusions, but it is reasonable to
conjecture that the nature of the statistical properties learned by the language model modu-
lates the humanness. The language model might learn statistical properties that are human
and it might learn statistical properties that are inhuman.

10.2. Psychometric predictive power and perplexity 127

1000 2000 3000 4000
Perplexity (PPL)

100

150

200

250

300

350

400

450
C

ha
ng

e
in

 lo
g

lik
el

ih
oo

d
(

LL
)

German Maze RT psycho. pred. power vs PPL

LMs
KN2
KN3
KN4
KN5
LSTM
LSTMd
LSRC
RNN
BERT
BERTd
GerPT2-SM
GerPT2-LG
GPT2X-SM
GPT2X-XL
GPT2-SM-50G
GPT2-SM-90G

800 1000 2000 3000 4000
Perplexity (PPL)

250

300

350

400

450

500

550

600

C
ha

ng
e

in
 lo

g
lik

el
ih

oo
d

(
LL

)

German Maze RT POS psycho. pred. power vs PPL

LMs
KN2
KN3
KN4
KN5
LSTM
LSTMd
LSRC
RNN
BERT
BERTd
GerPT2-SM
GerPT2-LG
GPT2X-SM
GPT2X-XL
GPT2-SM-50G
GPT2-SM-90G

Figure 10.4: Scatterplots of psychometric predictive power versus perplexity. The right
panel corresponds to linear mixed effects models that incorporate categorical
predictors and interactions for part of speech. The left panel corresponds to
linear mixed effects models that do not.

Note that the n-gram models had quite low perplexities. Indeed, they did not outperform
the recurrent neural neural networks and the Transformer models in Chapter 8 and Chap-
ter 9. This was probably due to my custom training corpus. The custom training corpus was
designed to contain the rare words that were in the G-Maze dataset. In general, Figure 10.4
does not show a strong relationship between psychometric predictive power and perplexity.
I needed a more constrained experiment to draw clearer insights.

10.2.3 A BERT model trained from scratch

Recall that in Chapter 9, I discussed that fine-tuning to predict reading times would be at
odds with the goal of evaluating the humanness of languagemodels trained in the usual way,
i.e. minimizing perplexity. Given that the perplexities of the large GPT-2 models presented
in the previous section were already lower than those of the n-gram models, it seemed un-
likely that fine-tuning on my custom corpus would yield qualitatively different results.
However, the feasibility of training a BERT model fully from scratch on the custom training
corpus (as opposed to a GPT model, which would generally require a much larger training
corpus) presented a great opportunity to explore psychometric predictive power and per-
plexity over the course of training. Because I control all aspects of the training, I can guaran-
tee that the architecture, the training data, random initializations, and hyperparameters are
all held constant. Therefore, the changes in psychometric predictive power and perplexity
observed during training are much more clearly attributable to robustness of patterns in the
training data.
Accidents in the training data would not appear in the test set, so perplexity would go up
or stay the same. Statistically robust but inhuman patterns in the training data would make
the perplexity and psychometric predictive power fall simultaneously. Human patterns not

128 10. Computational evidence for the divergence

4 2 0 2 4

NOUN

VERB

fl

wl

fl:wl

wf

x

LM

NOUN:LM

VERB:LM

C
oe

ff
ic

ie
nt

s

Coefficients for ScratchBERT Maze_response_time POS linear mixed effects models with 95% confidence intervals

0

5

10

15

20

25

Tr
ai

ni
ng

 e
po

ch
s

Figure 10.5: Coefficients for linear mixed effects models of G-Maze response times in the
German G-Maze corpus (ScratchBERT).

present in the training data could not be captured during training since themodel would not
have access to them. And, of course, statistically robust and human patterns would make
the perplexity fall and the psychometric predictive power rise. I hypothesized that at some
point rather early in the training process, the network would cease to discover statistically
robust human patterns and only discover inhuman ones. Further, this point should occur
well before the network stops discovering any statistically robust patterns, yielding one LM
that is best for psychometric predictive power and a materially different one that is best for
perplexity.
I followed a recipe4 by Julien Chaumond from huggingface (Wolf et al., 2020) to train this
small BERT model, which I call ScratchBERT. Its architecture was most similar to RoBERTa
(Liu et al., 2019). The model had 83,504,416 parameters: 6 layers, a hidden layer size of 768,
and 12 attention heads. The model considered sequences up to 512 words long, plus start
/ end tags. Like GPT-2, it used a byte pair encoding tokenizer with size 52,000 (just larger
than the vocabulary of my custom corpus).
When each training epoch completed, I saved the model, computed surprisals on the Ger-
man G-Maze dataset, and fit an mlm over those surprisals to predict the G-Maze response
times. The structures of the mlms were the same as those described in Section 10.2.2. The
coefficients for these mlms are presented in Figure 10.5. Again, all mlms converged. Note
that the coefficients for the LM surprisals are significantly positive, which shows that the
language models learned significantly useful information for predicting the response times
beyond the baseline predictors. This lends validity to the experiment.

4https://huggingface.co/blog/how-to-train

https://huggingface.co/blog/how-to-train

10.2. Psychometric predictive power and perplexity 129

800 900 1000 1100 1200 1300 1400
Perplexity (PPL)

80

100

120

140

C
ha

ng
e

in
 lo

g
lik

el
ih

oo
d

(
LL

)
Psychometric predictive power vs perplexity for ScratchBERT

10

15

20

25

Tr
ai

ni
ng

 e
po

ch
s

Figure 10.6: A scatterplot of psychometric predictive power versus perplexity. Each point
represents a checkpoint during training of ScratchBERT. The fitted curve ap-
pears in red and the 95% confidence interval appears in dashed grey.

Figure 10.6 presents the main result from this experiment. Starting with the 10th epoch,
psychometric predictive power and perplexity mostly fell together. The difference of 22 nats
between the log likelihoods for the epoch 10 mlm and the epoch 29 mlm was clearly sig-
nificant (p = 3.3 · 10−11). Psychometric predictive power and perplexity were positively
correlated (Spearman ρ = 0.52, p = 0.027). I also fitted a Generalized Additive Model
(GAM) to explore the best fit to the data allowing for nonlinear relationships. I fitted the
GAM with 7 splines (each spline adds more power to the model) as this was the highest
number of splines for which the output values remained significant. The curve of best fit
from the GAM appears in red in Figure 10.6, as well as a 95% confidence interval (the grey
dashed curves). Critically, the top left of the confidence interval is much lower than bottom
right, meaning that there is at least 95% confidence that the true curve is increasing.

As such, this is quite clean and compelling evidence that the languagemodel achieved better
perplexities over the course of its training at the expense of psychometric predictive power.

130 10. Computational evidence for the divergence

10.3 Discussion and Conclusions

This chapter introduces a novel dataset of German G-Maze response times that my col-
leagues collected and I analyzed as part of a collaboration. I made a custom training corpus
for the dataset, produced a wide range of word-by-word language model surprisals to com-
pare against the G-Maze response times, analyzed patterns for the relationship between psy-
chometric predictive power and perplexity on the new dataset, and then finally, by training
a BERT model on my training corpus from scratch, observed that psychometric predictive
power and perplexity fell together during training.
My power of inference with the ScratchBERT results is rather limited. Minimally, it will take
further research to apply this theory of the languagemodel divergence toGPTmodels rather
than the BERT model that I trained. Also, the results with the pre-trained models call into
question what it means for language models to be in the same family. Changing the size of
the model changes what patterns it can and will capture from the training data. In this light,
it is understandable that the pair of German language models, although trained on different
data, behaved similarly to a family of English GPT models.
However, I can still claim that these experiments are good computational evidence for a
languagemodel divergence at least for the specific models explored. There is onemodel that
is best in terms of perplexity and a different one is best in terms of psychometric predictive
power.

Chapter 11

Linguistic evidence for the divergence

By inspecting a small BERT language model at different epochs in its training, I found that
themodelwas achieving gains in perplexity at the expense of psychometric predictive power.
This was compelling computational evidence for the language model divergence.
However, there was perhaps somewhat of a missed opportunity with respect the human be-
havior measure that I used for this experiment. Namely, the dataset was constructed with
items as sets of four sentences with similar meanings. Indeed, my coauthors’ original mo-
tivation for collecting this data was to explore why language producers would elect one en-
coding over another. As such, these G-Maze response times contain robust patterns among
the four encoding choices.
In this chapter, I explain several statistical properties of the data thatmy coauthors collected.
Some of these properties were discovered jointly, and some I discovered onmy own after the
official collaboration ended. From these properties, I developed a simple computer-based
Maze task and a suite of 19 “tests” based on significant patterns in the G-Maze response
times. I ran these tests on the language model surprisals, hypothesizing that due to the
language model divergence, the test results would align more closely to the psychometric
predictive power values than the perplexity values. For the 19 test suite, this is exactly what
happened, which gives linguistic motivation and explanation for the language model diver-
gence.

11.1 Background

In this section, I first review the literature for constructing syntactic tests for evaluating lan-
guage models. Then, I explain the properties of the G-Maze response times that my suite of
tests looks for. On the surface, my tests are wholly innovative, but they do rely on an idea
that fueled the existing literature: assigning a low surprisal to a word can be interpreted as
the model choosing that word.

132 11. Linguistic evidence for the divergence

11.1.1 A review of syntactic tests for language model evaluation

Linzen, Dupoux, and Goldberg (2016) was one of the first works that compared language
model predictions against human judgements of grammaticality (acceptability). They tested
subject-verb agreement because they argued that it was an especially clear case for a task that
needs knowledge of linguistic hierarchy. They designed four tasks with increasing difficulty.
For the easiest task, they trained binary classifiers to take in the beginning of a sentence
and output whether the verb should be singular or plural. For the second task, they trained
binary classifiers to take in a complete sentence and output whether it had proper subject-
verb agreement. For the third task, they trained the model to predict the correct inflected
form for a verb in context given the base form. For the last task, they trainednormal language
models, computed the surprisal for both grammatical numbers of a verb in context, and
counted the item as correct if the correct version of the word had lower surprisal than the
incorrect version. The first three tasks had good accuracy, but the fourth task did not.

In their analysis, Linzen, Dupoux, and Goldberg (2016) noted that for the verb inflection
task, the system could in principle rule out intervening nouns if they do not fit thematically
with the verb. Gulordava et al. (2018) also argued this. They used the example sentence
“dogs in the neighborhood often bark”. “dogs” as the agent of “bark” has high thematic fit,
while “neighborhood” has low thematic fit in that role. So, in theory, the system could use
this information (just as a parser or semantic role labeler would) to “guess” the correct sub-
ject, rather than apply hierarchical knowledge to determine it. So, Gulordava et al. (2018)
extended the agreement tests to “meaningless” sentences, such as Noam Chomsky’s famous
“Colorless green ideas sleep furiously.” They generated such “nonce” sentences by substi-
tuting out all content words with other content words that preserve the inflection. They
further extended the work to three languages other than English, they did not fine-tune to
the agreement task, and even replicated Linzen, Dupoux, and Goldberg (2016) using a bet-
ter languagemodel than the original work had. They found that LSTMs trained on the usual
objective perform consistently well on the task across all four languages “not far from hu-
man performance in Italian.” They correlated the perplexities of the 68 models per language
they obtained during a hyperparameter search against the agreement accuracies. The Pear-
son correlations ranged from -0.55 (Hebrew) to -0.78 for English, which was the expected
direction. Lastly, they argued that the number of “attractors”, nouns with the other gram-
matical number that intervene between the true subject and verb, most dramatically reduces
performance on this task by both humans and language models.

Kuncoro et al. (2018) trained an LSTM with no syntactic knowledge, an LSTM that had
access to parse trees, and an LSTM that explicitly composes representations according to the
parse tree. Only the latter displayed a benefit for their subject-verb agreement task. Since
the compositional model had worse perplexity, they claimed that they found evidence of a
dissociation between perplexity and a more human notion of language model quality. They
wrote, “while perplexity can be a useful diagnostic tool, it may not be sensitive enough for
comparing models in terms of how well they capture grammatical intuitions.’’

11.1. Background 133

Tran, Bisazza, and Monz (2018) did a simple experiment in which they compared an LSTM
against an early Transformer model on the tasks of logical inference and subject-verb agree-
ment using data from Linzen, Dupoux, and Goldberg (2016). Their LSTM had a perplexity
of 67 and their Transformer had a perplexity of 69. Despite being just slightly better in terms
of perplexity, the LSTM was much better at subject-verb agreement and logical inference.
So, they, too, claimed that their results were evidence of a dissociation.
The unique contribution of Marvin and Linzen (2018) is that their dataset of syntactic tests
comprises pairs of sentences that “differ minimally from each other” (this is in the spirit but
distinct from the formal linguistic notion of minimal pair). For each pair, one sentence was
grammatical and the other was not. The language model computed the total surprisal for
both sentences andwas judged correct if the grammatical sentence had lower surprisal. They
tested subject-verb agreement, reflexive anaphora, and negative polarity items. They found
that as perplexity decreased, the performance of themodels on the task increased. However,
Marvin and Linzen (2018) claimed that this was because “each model was conditioned on
richer information than the previous one” rather than just merely perplexity.
Linzen and Leonard (2018) characterized subject-verb agreement errors made by humans
and by RNNs. They found two main divergences. First, attractors within relative clauses
causedmore errors for the RNNs than attractors within prepositional phrases, while humans
had the opposite behavior. They argued that the humans leveraged the comparatively larger
amount of implicit syntactic structure in a relative clause to make the correct agreement
decision. Second, RNNs exhibited a cumulative effect from all attractors and seemed to
consider distance between the subject and the attractors, while humans only showed an
effect based on the distance between the most recent attractor and the verb. The authors
proposed a “faulty’’ RNN heuristic that expects relative clauses to be short.
Ettinger (2020) obtained cloze and N400 data and compared these against completions sup-
plied by BERT. They reasoned that if there was a divergence between the N400 and cloze
profiles, this completion was especially challenging or interesting from a psycholinguistic
perspective. This allowed them to create a number of psycholinguistically-inspired “tests”.
The first dataset of completions was designed to test “commonsense and pragmatic infer-
ence”. They tested sensitivity by exploring differences within the “appropriate” semantic
category. BERT did decently well on these tests. The second dataset of completions was
designed to test “event knowledge and semantic role interpretation”. They tested sensitivity
by analyzing the effect of reversing word order of the role-fillers, which often reverses the
roles and appropriateness of the completions. Again, BERT performed well, but less so on
the sensitivity part. The third and last dataset tested noun hypernyms both with and without
negation. The sensitivity part had to do with the factual accuracy of the statements, rather
than the Cloze probability. BERT did well on the hypernyms but quite poorly with respect
to negation. The most important limitation of this study was that the language in these tests
was purposefully abnormal. So, tasks like these do not characterize the “normal” behavior
of the language model.

134 11. Linguistic evidence for the divergence

Hu et al. (2020) found that for syntactic tests, model architecture matters more than amount
of training data. Their syntactic test suite was of considerable scale: 34 types of tests, nearly
all in a 2 × 2 design. Further, they did not perform any kind of fine-tuning for the syntac-
tic tests. “Most of these test suites and criteria are designed so that n-gram models cannot
perform above chance for n = 5 (sometimes greater).’’ The syntactic tests covered subject-
verb agreement, negative polarity item licensing, reflexive pronoun licensing, main verb /
reduced relative garden paths, NP/Z garden paths, “gross syntactic expectation’’, center em-
bedding, filler-gap dependencies, and a novel suite involving clefts. They continued to use
the paradigm of assigning sentences with higher surprisal to an ungrammatical class.
Wei et al. (2021) performed a very careful series of experiments on subject-verb agreement
using BERT’s masking pipeline. They masked out the main verb, obtained the surprisal for
the singular and plural forms, and considered the lower surprisal form to be themodel’s pre-
diction. They evaluated on natural stimuli from Linzen, Dupoux, and Goldberg (2016) and
nonce stimuli from Gulordava et al. (2018). By manipulating the training data, specifically
removing sentences that contained test verbs, Wei et al. (2021) found that BERT generalized
to unseen words pretty well and claimed that this is evidence that BERT learns rules symbol-
ically but can make “noisy observations’’. This hypothesis is situated between two extremes
of an “idealized symbolic learner’’ and an “item-specific learner’’. Further, Wei et al. (2021)
found two insights into the limitations of BERT’s “knowledge’’. First, BERT can fail to learn
the agreement features for infrequent verb forms. Second, imbalance in the verb forms can
lead to strong priors that override the grammatical context. So, BERT can pick the wrong
form when it is more frequent than the correct form.

11.1.2 Properties of the German G-Maze data

Recall the 2× 2 structure of the items in the Sikos et al. (2017) dataset via a reproduction of
the example item from Chapter 10:

(1) The journalist published… predictive context (pred)
a. …[the carefully written essay]. pre-nominal modification (pre)
b. …[the essay that was carefully written]. post-nominal modification (pos)

(2) The man evaluated… non-predictive context (non)
a. …[the carefully written essay]. pre-nominal modification (pre)
b. …[the essay that was carefully written]. post-nominal modification (pos)

For ease of discussion,my coauthors and I decided to partition these sentences into 6 distinct
regions. Region 0 is the sentence-initial determiner (“The”). Region 1 is the subject noun
(“journalist” or “man”). Region 2 is the main verb (“published” or “evaluated”). Region 3 is
the determiner following the main verb (“the”). Region 4 is the chunk that immediately fol-
lows that determiner, either an object noun (“essay”) or a modifier phrase (“carefully writ-
ten”). Region 5 is the chunk that immediately follows Region 4, either a modifier phrase

11.1. Background 135

(“that was carefully written”) or an object noun (“essay”). The items technically contained
a region following Region 5, but neither my coauthors nor I used it in analyses. My coau-
thors made the decision to represent the G-Maze response time of a region as the average of
the response times for the words in the region. I also discarded Region 0 following the best
practice for reading behavior measures.
One of the biggest results from Sikos et al. (2017) is that my coauthors and I observed what
seemed to be significantly different response times for all four conditions at Region 4. There
are six ways to choose two conditions from four, so in theory, this gave six testable properties
of the G-Maze data. With more careful significance testing that did not aggregate over the
participants in the data collection experiment, I found that four of the six properties were
statistically significant. One of these was that the G-Maze response times at Region 4 for
the non-predictive context, post-nominal modification condition were significantly higher
than those for the predictive context, post-nominal modification condition. I abbreviate
this property by listing the area of the sentence under consideration (Region 4), plus the
condition with the higher response times (nonpost), plus the condition with the lower re-
sponse times (predpost). Thus, this property is named “4 nonpost predpost”. I found three
other significant properties at Region 4 and three significant properties at Region 5, given
in Section 11.3.
Note that it was somewhat artificial to compare the response times at Region 4 and Region
5 because certain pairings compared the response time for an object noun against the re-
sponse time for a modifier phrase. So, I developed four additional properties that compare
object nouns against object nouns, and I developed four additional properties that compare
modifier phrases against modifier phrases. I explain just one of each type of the proper-
ties here and refer to Section 11.3 for the complete list. The object noun (n) had a higher
response time in the non-predictive context, post-nominal modification condition than in
the non-predictive pre-nominal modification condition (n nonpost nonpre). The modifier
phrase (m) had a higher response time in the non-predictive context, pre-nominal modifi-
cation condition than in the non-predictive context, post-nominal modification condition
(m nonpre nonpost).
Before Region 4, the modification did not occur yet, so there were only two conditions to
track, the predictive context and the non-predictive context. The predictive context subject
nouns were designed to be more surprising than the non-predictive context subject nouns,
leading to the property “1 pred non”. Finally, I compared themain verbs to the subject nouns
(area 21). The main verbs had significantly higher response times than the subject nouns in
three cases, leading to my last three properties.

136 11. Linguistic evidence for the divergence

11.2 Methods

When a human participant completes a G-Maze task, they must make a decision between
two words to continue the sentence grammatically. In the spirit of the literature on syntactic
tests for languagemodels, it is natural to envision a task inwhich a languagemodel computes
the surprisal of the true word and the foil word in context, and then it predicts that the true
word is the word with the smaller surprisal. I ran this task on the English G-Maze dataset
from Chapter 9 and the German G-Maze dataset from Chapter 10.
Then, I converted my list of 19 properties into a suite of 19 tests. The first step was to ex-
plore the extent to which the properties are true under different variations of the data. Since
different conditions within the same item were clearly not independent, it was most appro-
priate to average over the participants (who never saw an item in multiple conditions) and
then compute a paired t-test across the two conditions, pairing on the items.
I did this first with the log-transformed, centered, and scaled response times. I call this the
“RT” model. Then, I computed a linear mixed effects model using the same model structure
as the one used in Chapter 10, but without a language model. I called the predicted values
from thismodel the “bs”model, and the residuals from thismodel the “rT”model. The point
of doing this is that I wanted to see whether base factors like length, frequency, and random
variation in the participants were ultimately responsible for the properties that I observed. I
chose the final list of 19 properties for the test suite based on whether the property held for
the rT model with a p-value from the t-test at most 0.05.
I tested all 16 language models from Chapter 10, using linear mixed effects models and
best practices from Chapter 9 and the methods for obtaining word-by-word surprisals from
Chapter 8. In particular, I centered and scaled the surprisals, predicted the response times
by inputting the scaled surprisals into the linear mixed effects models, and then subtracted
the bs model values to get language model-informed residuals.
I also tested the checkpoints from the BERT model that I trained from scratch (Scratch-
BERT). The model started passing tests at the third epoch and the number of tests passed
stabilized at the eighth epoch.

11.3. Results 137

11.3 Results

90 100 110 120 130 140
Perplexity (PPL)

94.50

94.75

95.00

95.25

95.50

95.75

96.00

96.25

96.50

M
az

e
ac

cu
ra

cy

English G-Maze accuracy vs perplexity

LMs
GPT-2-SM
GPT-2-MD
GPT-2-LG
GPT-2-XL
Neo-125M
Neo-1.3B
Neo-2.7B
Neo-6B
OPT-125M
OPT-350M
OPT-1.3B
OPT-2.7B
OPT-6.7B
OPT-13B

700 800 900 1000 1200 1400 1600
Perplexity (PPL)

86.5

87.0

87.5

88.0

88.5

89.0

89.5

M
az

e
ac

cu
ra

cy

German G-Maze accuracy vs perplexity

LMs
GerPT2-SM
GerPT2-LG
GPT2X-SM
GPT2X-XL
GPT2-SM-50G
GPT2-SM-90G

Figure 11.1: Accuracy versus perplexity for Transformer language models on the G-Maze
for language models task. The left panel gives the results for the English G-
Maze dataset and the right panel gives the results for the German G-Maze
dataset. The perplexity axis is on a log scale.

Figure 11.1 presents the results from the G-Maze for language models task that I designed.
Note that the range of accuracies is much higher and the range of perplexities is much lower
for English. I interpret this tomean that theGermanG-Mazewasmore difficult, likely due to
the uncommon words that my colleagues selected when designing the items to avoid ceiling
effects.
The English accuracies were very correlated with perplexity:
Spearman ρ = −0.56, p = 0.036. With six data points, it did not seem appropriate to
compute a correlation for German. Note though that the pair of GPT-2-SMmodels that only
differed in terms of the amount of training data exhibited the expected trend with respect
to G-Maze accuracy, as opposed to the unexpected trend that they had with psychometric
predictive power. Further, the English data points clearly do not show the pattern that they
had for psychometric predictive power.
I conclude that the G-Maze for language models task was well-formed, but gave results that
were too close to perplexity to be independently informative. Further, the task is rather
easy for language models. The ceiling of 100% accuracy is not very far off, especially for the
English models. This made sense because the foil words in a G-Maze task are designed to be
completely unacceptable in context. Therefore, the language model does not need to make
that fine-grained of a distinction to identify the foil word.

138 11. Linguistic evidence for the divergence

Property rT RT bs KN2 KN3 KN4 KN5 LSTM LSTMd LSRC RNN
1 pred non * ** *** *** *** *** *** *
21 pred pred * * X *** *** *** *** *** ** *** ***
21 pred non *** *** *** *** *** *** *** *** *** *** ***
21 non non *** *** *** *** *** *** *** *** *** *** ***
n nonpost nonpre *** *** X X X X X X X X
n nonpost predpre *** *** X X X X X * X X
n nonpre predpost * ** *** *** *** *** * ** * **
n predpost predpre * . X X X X X X X X X
m nonpre nonpost *** *** ** * . *** *** *** ***
m nonpre predpost *** *** * . *** *** *** ***
m predpre nonpost *** *** ** * *** *** ***
m predpre predpost *** *** ** ** * *** *** ** *
4 nonpost predpost *** *** X X . . . *** * ** *
4 nonpre predpost *** *** X ** ** * * ** *** *** **
4 nonpre predpre *** ** . *
4 predpre predpost *** *** X ** ** ** ** ** *** *** *
5 nonpost predpre ** X X X X X X X X X
5 nonpre predpre *** *** . .
5 predpost predpre * X X X X X X X X X X

Table 11.1: Left half of the results from the novel test suite built for the German G-Maze
corpus. The symbols in the table correspond to significance levels. X : wrong
direction, . : p < 0.1, * : p < 0.05, ** : p < 0.01, *** : p < 0.001.

Table 11.1 and Table 11.2 present the results from applying the novel test suite over 16 lan-
guage models that generated surprisals for the German G-Maze corpus. Note that the ad-
justed response times (the residuals from a linear mixed effects model with only baseline
predictors) symbolized by rT passed all 19 tests, but no language model did. Further, there
was no test that all language models passed and there was no test that no language models
passed.
The tests are grouped by the areas of the sentence that they examine. n-gram models per-
formed well with areas 1 and 21 because the context is so small that it fits within the n. The
recurrent models (LSTM, LSTMd, LSRC, RNN) additionally performed well on the mod-
ifier tests, and slightly better on Region 4. The non-Transformer models mostly failed the
object noun tests and Region 5 tests. It seems that even though the recurrent models have
the capacity to store long-term information, they did not do it well enough on this dataset.

11.3. Results 139

BERT BERTd gerpt2-SM gerpt2-LG gpt2X-SM gpt2X-XL GPT2-50G GPT2-90G
X X ** *** ** ** *** **
** *** . X X
* *** *** *** *** *** * **
. *** *** *** *** *** ** ***
*** *** *** *** *** *** *** ***
*** *** *** *** *** *** *** ***
X * ** ** . *** ** **
*** *
*** *** * ***
*** *** ** X
*** *** X X X X X X
*** *** X X X X X X
*** *** *** *** *** *** *** ***
*** *** ** *** ** *** ** *
* *** ** *** *** *** ***
*** *** * ** . *** *
*** *** ** *** *** *** *** ***
*** *** *** *** *** *** *** ***
*** *** *** *** *** *** *** ***

Table 11.2: Right half of the results from the novel test suite built for the German G-Maze
corpus. The symbols in the table correspond to significance levels. X : wrong
direction, . : p < 0.1, * : p < 0.05, ** : p < 0.01, *** : p < 0.001.

Contrast this with the patterns for the Transformer models in Table 11.2. The Transformers
did very well with Regions 4 and 5, but GPT models struggled with the modifier tests. I
assert that this was because the subject and verb were already enough to trigger the modi-
fiers with or without the object noun, representing a pattern that the GPT models learned
but humans did not use. Indeed, for the predictive context, the property fully reversed for
the GPT models, meaning that the models became more surprised after seeing more of the
sentence. The models could have been triggered more strongly by the predictive subject and
verb than a humanwould. Or, they could have assigned a lower surprisal to the pre-nominal
modification structure because that structure is more common. Further work is required to
tease apart these possibilities, but it is very promising that these syntactic tests have captured
the inhuman trends that I hypothesized.
The property “4 predpre predpost” was the one test that GPT2-50G passed but GPT2-90G
did not, giving a clue as to why the smaller training set led to a higher psychometric pre-
dictive power, as discussed in Chapter 10. This property states that the object noun in a
predictive context should be less surprising than the modifiers. But the model with the
larger training corpus may have learned a triggering relationship between the subject noun
/ main verb and the modifiers directly, which would counter the trend.

140 11. Linguistic evidence for the divergence

1000 2000 3000 4000
Perplexity (PPL)

8

10

12

14

16

N
um

be
r

of
 te

st
s

pa
ss

ed

Scatterplot for novel battery of G-Maze tests

LMs
KN2
KN3
KN4
KN5
LSTM
LSTMd
LSRC
RNN
BERT
BERTd
GerPT2-SM
GerPT2-LG
GPT2X-SM
GPT2X-XL
GPT2-SM-50G
GPT2-SM-90G

Figure 11.2: Scatter plot for the number of tests passed versus perplexity for the 16 exam-
ined language models. The perplexity axis is on a log scale.

Figure 11.2 shows the relationship between perplexity and the number tests passed in my
novel suite for the 16 language models that I examined. The correlation was significantly
positive: Pearson ρ = 0.57, p = 0.02. As such, this is rather strong evidence that the
number of tests passed in the test suite is not as related to perplexity as is the G-Maze for
language models accuracy. So, it just might capture something separate from perplexity and
be a worthwhile language model evaluation metric in its own right.

11.3. Results 141

800 900 1000 1100 1200 1300 1400
Perplexity (PPL)

8

9

10

11

12
N

um
be

r
of

 te
st

s
pa

ss
ed

Scatterplot for novel battery of G-Maze tests (ScratchBERT)

8

13

18

23

28

Tr
ai

ni
ng

 e
po

ch
s

Figure 11.3: Scatter plot for the number of tests passed versus perplexity for the checkpoints
of the BERT model that I trained from scratch. The perplexity axis is on a log
scale.

As shown in Figure 11.3, the trend was far less strong for the BERT models trained from
scratch (Pearson ρ = 0.22, p = 0.35), as nearly all of the models passed between 9 and
11 tests. Upon inspecting the results, I noticed that the specific tests that the ScratchBERT
models passed were most similar to those that the LSTM passed. I find this compelling
because the training data and model size were similar for these two architectures.
In the bigger picture, even a not significant result was a good result in this case because it
means that the test suite did not mirror perplexity on these 30 models either.

142 11. Linguistic evidence for the divergence

Subject_Noun Main_Verb Determiner Noun_or_Modifier Modifier_or_Noun
Region

42

44

46

48

50

52

Ad
ju

st
ed

 r
es

po
ns

e
tim

e

By-region, actual G-Maze response times (0-100 range)

nonpost
nonpre
predpre
predpost

Subject_Noun Main_Verb Determiner Noun_or_Modifier Modifier_or_Noun
Region

44

45

46

47

48

49

50

Ad
ju

st
ed

 r
es

po
ns

e
tim

e

Adjustment for by-region G-Maze response times (0-100 range)

nonpost
nonpre
predpre
predpost

Subject_Noun Main_Verb Determiner Noun_or_Modifier Modifier_or_Noun
Region

6

4

2

0

2

4

Ad
ju

st
ed

 r
es

po
ns

e
tim

e

Adjusted, by-region, actual G-Maze response times

nonpost
nonpre
predpre
predpost

Figure 11.4: Plots of actual average G-Maze response times by region. The top panel is
the centered and scaled response times, the middle panel is the predicted val-
ues from the baseline linear mixed effects model, and the bottom panel is the
residuals from the baseline linear mixed effects model.

In the original publication, my colleagues and I found it illuminating to plot the average G-
Maze response times by region for a more intuitive comparison. In particular, Region 4 in
the top panel of Figure 11.4 illustrates several of the properties that were featured in Sikos
et al. (2017) and became part of my novel test suite.

As shownby the predicted values (middle panel), length and frequency applied to the predic-
tive and non-predictive contexts differently in the first half of the sentence and pre-nominal
and post-nominal modification differently in the second half of the sentence. This was to

11.3. Results 143

Subject_Noun Main_Verb Determiner Noun_or_Modifier Modifier_or_Noun
Region

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Ad

ju
st

ed
 r

es
po

ns
e

tim
e

Adjusted, by-region, predicted G-Maze response times using GPT2-SM-50G

nonpost
nonpre
predpre
predpost

Subject_Noun Main_Verb Determiner Noun_or_Modifier Modifier_or_Noun
Region

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ad
ju

st
ed

 r
es

po
ns

e
tim

e

Adjusted, by-region, predicted G-Maze response times using GPT2-SM-90G

nonpost
nonpre
predpre
predpost

Figure 11.5: Plots of adjusted, by-region, predicted G-Maze response times for the GPT2-
SM models.

be expected as length and frequency are entirely local effects. Also note that since nonpost
(black) and nonpre (red) were not significantly different at Region 4, this combination did
not enter the test suite.
Since the GPT2-SM models produced the most interesting results in other analyses, I pro-
duced by-region plots to compare for these two models. As shown in Figure 11.5, the plots
are quite similar. The non-predictive context verb had a significantly higher surprisals than
the predictive context verb just in the 90G version, although this does not correspond to
a test in the suite because the human response times did not have any sensible significant
patterns at this region. Still it was not intuitive to assign a lower surprisal to the predictive
verb as these verbs were less common (frequent).
Also, the 50G version more correctly captured that the predpost condition (blue) was far
easier than the other conditions. In all, the test suite was a more systematic way to evalu-
ate the surprisal profiles from these models since inspection did not easily reveal the most
important trends.

144 11. Linguistic evidence for the divergence

Subject_Noun Main_Verb Determiner Noun_or_Modifier Modifier_or_Noun
Region

3

2

1

0

1

Ad
ju

st
ed

 r
es

po
ns

e
tim

e

Adjusted, by-region, predicted G-Maze response times using BERT from huggingface

nonpost
nonpre
predpre
predpost

Subject_Noun Main_Verb Determiner Noun_or_Modifier Modifier_or_Noun
Region

2

1

0

1

2

Ad
ju

st
ed

 r
es

po
ns

e
tim

e

Adjusted, by-region, predicted G-Maze response times using BERT from DBMDZ

nonpost
nonpre
predpre
predpost

Figure 11.6: Plots of adjusted, by-region, predicted G-Maze response times for the pre-
trained BERT models.

The pre-trained BERT models passed the largest number of tests in the suite despite not
having the best perplexities. According to their dedicated by-region plots in Figure 11.6,
it is not very clear why. In particular, the BERT models made some faulty predictions at
Region 4, which was the most important region in Sikos et al. (2017).
While they did correctly predict that the predpost conditionwas the easiest, they erroneously
predicted that the modifiers would always be more surprising than the object noun. This is
sensible in that modifiers are optional while the object noun is not, especially following a
determiner. It also could have been an artifact of the “no_future” technique, since themodel
was trained only on complete “sentences”, but then it had to assign a surprisal to an adjective
that followed a determiner as the last words of the text to be scored.

11.3. Results 145

Subject_Noun Main_Verb Determiner Noun_or_Modifier Modifier_or_Noun
Region

0.4

0.2

0.0

0.2

0.4
Ad

ju
st

ed
 r

es
po

ns
e

tim
e

Adjusted, by-region, predicted G-Maze response times using ScratchBERT, epoch 9

nonpost
nonpre
predpre
predpost

Subject_Noun Main_Verb Determiner Noun_or_Modifier Modifier_or_Noun
Region

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Ad
ju

st
ed

 r
es

po
ns

e
tim

e

Adjusted, by-region, predicted G-Maze response times using ScratchBERT, epoch 28

nonpost
nonpre
predpre
predpost

Figure 11.7: Plots of adjusted, by-region, predicted G-Maze response times for the BERT
models trained from scratch.

Finally, I compare the underfitted ScratchBERT model with high perplexity and high psy-
chometric predictive power against the possibly overfitted ScratchBERT model with lower
perplexity and lower psychometric predictive model in Figure 11.7. Looking particularly at
Region 4, it is interesting that the underfitted model looks more like the BERT model while
the possibly overfitted model looks more like the human behavior measures and the GPT
models.
This evokes an important limitation to my theory. It would be too strong to say that after a
language model divergence, the language model fully stops learning good patterns and only
learns bad patterns. Even if this were true, it would not be provable. Instead, my theory of
the language model divergence argues that the language model begins learning noticeably
more bad patterns but could continue to learn more good patterns as well.

146 11. Linguistic evidence for the divergence

11.4 Discussion and Conclusion

This chapter considers the language model divergence from a linguistic standpoint. I for-
malized and tested a straightforward extension of the G-Maze paradigm for evaluating lan-
guage models. Then, when this did not prove useful, I developed a suite of 19 tests that
quantify the ways in which language model surprisals can be like or not like human G-Maze
response times. The number of tests passed is clearly dissociated from perplexity and high-
lights a promising avenue for experimental methods of language model evaluation.
In the bigger picture, Chapter 10 and Chapter 11 illustrated a rather self-contained data
science process. I collected a small dataset focusing on things that I considered important,
controlledmanymore variables than could be controlled in amore “natural” linguistic setup,
and derived results that were remarkably clean. Although the dangers of big data and overly
powerful models are quite present in the collective minds of researchers at the moment, it
is important to consider that small, controlled datasets have their pitfalls, too. In particular,
there are increased risks for confirmation bias, over-representing the known, and under-
representing the unknown.

Chapter 12

Conclusion and outlook for language
modeling research

Computer Science

Data Domain

Mathematics

Figure 12.1: The “parent” fields of data science.

To evaluate the humanness of language models, I drew on three academic fields. In the first
part of this thesis, I characterized the types of knowledge that language models do and do
not capture well. Building thesemodels was computer science research (blue in Figure 12.1).
Throughout the thesis, I needed and took advantage of knowledge of the data domain (yel-
low in Figure 12.1). In particular, human behavior measures are complex, so the field has
developed specific methodologies, conventions, and techniques for them. And lastly, the
main tools with which I related language model predictions and measures of human behav-
ior belonged to statistics, commonly situated within mathematics (red in Figure 12.1). In
short, this thesis is a work of the triple intersection: data science.

148 12. Conclusion and outlook for language modeling research

12.1 Situating my contributions within CERBA

Accordingly, I will interpret the main contributions of my thesis in terms of my novel for-
mulation of a data science pipeline. Each item in the pipeline is accompanied by a small
graphic of the parent fields that I consider to be especially relevant for it.

CS
Collect high-quality data in an organized fashion.

The Maze study in Chapter 10 produced a carefully manipulated corpus of response times
that captured very sophisticated aspects of human reading behavior. I endeavored to make
test corpora for language modeling clean while preserving comparability to work by other
researchers. Our LMTuringTest study (Chapter 7) obtained introspections into humanness.

M
Extrapolate from exploring representative samples.

I investigated the robustness of the trends that I found, such as larger Transformers are less
correlatedwithword length and frequency (Chapter 8), the unexpected role of part of speech
when analyzing psychometric predictive power and perplexity (Chapter 9), and abilities of
language models to reproduce intricate Maze behavior (Chapter 11) so that I may make
inferences beyond my specific corpora.

D Recognize and describe useful patterns in data.
Powerful linguistic features in Wiegand et al. (2018) outperformed fine-tuned word embed-
dings. I recognized and explored the interplay between reading time, length, and language
model surprisal in Chapter 8 and Chapter 9. I evaluated the longevity of triggering effects
in language (Chapter 1). And I used language models with varying degrees of knowledge of
the future to characterize the depth of prediction while reading (Chapter 11).

Build appropriate models of data.
CDLM (Singh, Greenberg, and Klakow, 2016) was designed to reproduce the triggering ef-
fects recognized in Chapter 1. SRNN (Oualil et al., 2016a) created specialized syntactic
and semantic embeddings as these are somewhat separable aspects. LSRC (Oualil et al.,
2016b) was designed to maintain a slow-moving meaning representation of the whole doc-
ument. SWORDSS (Singh et al., 2016) exploited the generalizability of orthography to gen-
erate meaning representations for rare words.

Apply models to relevant tasks.
Overall, my work contributed to state-of-the-art language model performance put forward
a specific theory about the future of language modeling. I provided data-driven evidence
and solutions, such as building test suites for evaluating language models that reward things
other than the most probable text. The lexicon from Wiegand et al. (2018) can be used to
help keep people safe online. And I suggested desirable qualities of datasets to be collected
in the future, turning the pipeline into a cycle.

12.2. On the future of language modeling 149

12.2 On the future of language modeling

When a language model generates text, it generates the most probable text. This text is not
necessarily correct, interesting, human, natural, or any other quality that is not encoded in
the language model’s objective function. I showed some of the mechanism behind this in
the first part of this thesis. Namely, specific architecture choices enabled language models
to capture long-distance triggering effects because that is, mathematically, what they were
missing.
But, the argument can be made that language models do this too well now. In the second
part of this thesis, I presented evidence for a language model divergence between the most
probable text and the most human-like text that the language models sought to mimic. The
result is that Bender and Gebru et al.’s (2021) term “stochastic parrot” is becoming even
more apt for contemporary language models. My most concrete prediction for the future
of language modeling is that the divergence will widen, resulting in text generation that is
more unnatural and easy to identify as artificially created. A promising recourse for this
is to adopt evaluation methods of the kind that I developed and used in this work’s final
chapters. Comparison against measures of human behavior, whether they are introspective
ratings, reading times, response times, or curated lists of statistical properties, are a way to
reward further advancements without also rewarding banality. For now, the world can take
heart that artificial intelligence is not vying to capture some essence of humanity. At best,
artificial intelligence can echo it.

150 12. Conclusion and outlook for language modeling research

Bibliography

Al-Rfou’, Rami, Bryan Perozzi, and Steven Skiena. 2013. Polyglot: Distributed word repre-
sentations for multilingual NLP. In CoNLL 2013, Proceedings of the Seventeenth Confer-
ence on Computational Natural Language Learning, pages 183–192, Association for Com-
putational Linguistics, Sofia, Bulgaria.

Alumäe, Tanel andMikkoKurimo. 2010. Efficient estimation ofmaximumentropy language
models with n-gram features: an SRILM extension. In INTERSPEECH 2010, Proceedings
of the 11th Annual Conference of the International Speech Communication Association,
pages 1820–1823, Makuhari, Chiba, Japan.

Anastasakos, Tasos, Young-Bum Kim, and Anoop Deoras. 2014. Task specific continuous
word representations for mono and multi-lingual spoken language understanding. In
ICASSP 2014, Proceedings of the 2014 IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 3246–3250, Florence, Italy.

Aurnhammer, Christoph and Stefan L. Frank. 2019. Evaluating information-theoretic mea-
sures of word prediction in naturalistic sentence reading. Neuropsychologia, 134:107198.

Baayen, R H, R Piepenbrock, and L Gulikers. 1995. CELEX2 LDC96L14. Web Download.
Philadelphia: Linguistic Data Consortium.

Baker, Collin F., Charles J. Fillmore, and John B. Lowe. 1998. The Berkeley FrameNet
Project. In ACL 1998, Proceedings of the 36th Annual Meeting of the Association for Com-
putational Linguistics and 17th International Conference on Computational Linguistics,
Volume 1, pages 86–90, Montréal, Quebec, Canada.

Bárány, Imre and Van Vu. 2007. Central limit theorems for Gaussian polytopes. The Annals
of Probability, 35(4):1593–1621.

Baroni, Marco, Silvia Bernardini, Adriano Ferraresi, and Eros Zanchetta. 2009. The WaCky
Wide Web: a collection of very large linguistically processed web-crawled corpora. Lan-
guage Resources and Evaluation, 43(3):209–226.

152 Bibliography

Bellegarda, Jerome R. 1998a. Exploiting both local and global constraints for multi-span
statistical languagemodeling. In ICASSP 1998, Proceedings of the 1998 IEEE International
Conference on Acoustics, Speech and Signal Processing, volume 2, pages 677–680, Seattle,
Washington.

Bellegarda, Jerome R. 1998b. A multispan language modeling framework for large vocabu-
lary speech recognition. IEEE Transactions on Speech andAudio Processing, 6(5):456–467.

Bender, Emily M, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell.
2021. On the dangers of stochastic parrots: Can language models be too big? In FAccT
2021, Proceedings of the 2021ACMconference on fairness, accountability, and transparency,
pages 610–623, Virtual Event, Canada.

Bengio, Samy and Georg Heigold. 2014. Word embeddings for speech recognition. In IN-
TERSPEECH 2014, Proceedings of the 15th Annual Conference of the International Speech
Communication Association, pages 1053–1057, Singapore.

Bengio, Yoshua, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A neural
probabilistic language model. Journal of Machine Learning Research, 3:1137–1155.

Bengio, Yoshua, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009. Curriculum
learning. In ICML 2009, Proceedings of the 26th Annual International Conference on Ma-
chine Learning, page 41–48, Association for Computing Machinery, Montréal, Quebec,
Canada.

Bengio, Yoshua and Jean-Sébastien Senécal. 2003. Quick training of probabilistic neural nets
by importance sampling. In AISTATS 2003, Proceedings of the 9th International Workshop
on Artificial Intelligence and Statistics, pages 17–24, Key West, Florida.

Bengio, Yoshua, Patrice Simard, and Paolo Frasconi. 1994. Learning long-term dependen-
cies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–
166.

Bird, Steven, EwanKlein, and Edward Loper. 2009. Natural language processing with Python:
analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”.

Black, Sid, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-Tensorflow.

Bojanowski, Piotr, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching
word vectors with subword information. Transactions of the Association for Computa-
tional Linguistics, 5:135–146.

Boston,Marisa F, John THale, ShravanVasishth, and Reinhold Kliegl. 2011. Parallelism and
syntactic processes in reading difficulty. Language andCognitive Processes, 26(3):301–349.

153

Boston, Marisa Ferrara, John Hale, Reinhold Kliegl, Umesh Patil, and Shravan Vasishth.
2008. Parsing costs as predictors of reading difficulty: An evaluation using the Potsdam
Sentence Corpus. Journal of Eye Movement Research, 2(1):1–12.

Botha, Jan A. and Phil Blunsom. 2014. Compositional morphology for word representa-
tions and language modelling. In ICML 2014, Proceedings of the 31st International Con-
ference on International Conference on Machine Learning, pages 1899–1907, Association
for Computing Machinery, Beijing, China.

Bowman, Samuel R., Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy
Bengio. 2016. Generating sentences from a continuous space. InCoNLL 2016, Proceedings
of The 20th SIGNLL Conference on Computational Natural Language Learning, pages 10–
21, Association for Computational Linguistics, Berlin, Germany.

Brants, Thorsten and Alex Franz. 2006. Web 1T 5-gram Version 1 LDC2006T13. Web
Download. Philadelphia: Linguistic Data Consortium.

Brown, Peter F., John Cocke, Stephen A. Della Pietra, Vincent J. Della Pietra, Fredrick Je-
linek, JohnD. Lafferty, Robert L.Mercer, and Paul S. Roossin. 1990. A statistical approach
to machine translation. Computational Linguistics, 16(2):79–85.

Brown, Peter F., StephenA.Della Pietra, Vincent J.Della Pietra, JenniferC. Lai, andRobert L.
Mercer. 1992. An estimate of an upper bound for the entropy of English. Computational
Linguistics, 18(1):31–40.

Burnap, Pete and Matthew L Williams. 2015. Cyber hate speech on Twitter: An application
of machine classification and statistical modeling for policy and decision making. Policy
and Internet, 7(2):223–242.

Cameron, A Colin and Frank AG Windmeijer. 1996. R-squared measures for count data
regression models with applications to health-care utilization. Journal of Business and
Economic Statistics, 14(2):209–220.

Charniak, Eugene. 2001. Immediate-head parsing for language models. In ACL 2001, Pro-
ceedings of the 39th Annual Meeting of the Association for Computational Linguistics, pages
124–131, Toulouse, France.

Chelba, Ciprian, Tomáš Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn,
and Tony Robinson. 2013. One billion word benchmark for measuring progress in statis-
tical language modeling. arXiv preprint arXiv:1312.3005.

Chen, Stanley F. and Joshua Goodman. 1996. An empirical study of smoothing techniques
for language modeling. In ACL 1996, 34th Annual Meeting of the Association for Compu-
tational Linguistics, pages 310–318, Santa Cruz, California.

154 Bibliography

Cheng, Wei-Chen, Stanley Kok, Hoai Vu Pham, Hai Leong Chieu, and Kian Ming A. Chai.
2014. Languagemodeling with sum-product networks. In INTERSPEECH 2014, Proceed-
ings of the 15th Annual Conference of the International Speech Communication Association,
pages 2098–2102, Singapore.

Choi, Yoonjung and Janyce Wiebe. 2014. +/-EffectWordNet: Sense-level lexicon acquisition
for opinion inference. In EMNLP 2014, Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, pages 1181–1191, Association for Computa-
tional Linguistics, Doha, Qatar.

Clarkson, Philip and Tony Robinson. 1999. Towards improved language model evaluation
measures. In EUROSPEECH 1999, Proceedings of the 6th European Conference on Speech
Communication and Technology, pages 1927–1930, Budapest, Hungary.

Collobert, Ronan. 2011. Deep learning for efficient discriminative parsing. In AISTATS
2011, Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, pages 224–232, Fort Lauderdale, Florida.

Collobert, Ronan and Jason Weston. 2008. A unified architecture for natural language pro-
cessing: Deep neural networks with multitask learning. In ICML 2008, Proceedings of
the 25th International Conference on Machine Learning, page 160–167, Association for
Computing Machinery, Helsinki, Finland.

Cop, Uschi, Nicolas Dirix, Denis Drieghe, and Wouter Duyck. 2017. Presenting GECO:
An eyetracking corpus of monolingual and bilingual sentence reading. Behavior Research
Methods, 49(2):602–615.

Cotterell, Ryan, Hinrich Schütze, and Jason Eisner. 2016. Morphological smoothing and
extrapolation of word embeddings. In ACL 2016, Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1651–
1660, Berlin, Germany.

Cover, Thomas and Roger King. 1978. A convergent gambling estimate of the entropy of
English. IEEE Transactions on Information Theory, 24(4):413–421.

Creutz, Mathias and Krista Lagus. 2005. Unsupervised Morpheme Segmentation and Mor-
phology Induction from Text Corpora using Morfessor 1.0. Helsinki University of Technol-
ogy, Helsinki, Finland.

Dai, Zihang, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdi-
nov. 2019. Transformer-XL: Attentive language models beyond a fixed-length context. In
ACL 2019, Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 2978–2988, Florence, Italy.

155

Davidson, Thomas, Dana Warmsley, Michael Macy, and Ingmar Weber. 2017. Automated
hate speech detection and the problemof offensive language. In ICWSM2017, Proceedings
of the International AAAIConference onWeb and SocialMedia, volume 11, pages 512–515,
Montréal, Quebec, Canada.

Davies, Mark. 2008. Word frequency data from The Corpus of Contemporary American
English (COCA). https://www.wordfrequency.info.

Demberg, Vera and Frank Keller. 2008. Data from eye-tracking corpora as evidence for
theories of syntactic processing complexity. Cognition, 109(2):193–210.

Deng, Lingjia and JanyceWiebe. 2016. Recognizing opinion sources based on a new catego-
rization of opinion types. In IJCAI 2016, Proceedings of the International Joint Conference
on Artificial Intelligence, pages 2775–2781, New York, New York.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

Dias, Gaël, Dinko Lambov, and Veska Noncheva. 2009. High-level features for learning
subjective language across domains. In ICWSM 2009, Proceedings of the International
AAAI Conference on Web and Social Media, pages 199–202, San José, California.

Drieghe, Denis, Keith Rayner, and Alexander Pollatsek. 2005. Eye movements and word
skipping during reading revisited. Journal of Experimental Psychology: Human Perception
and Performance, 31(5):954–969.

Duchi, John, EladHazan, and Yoram Singer. 2011. Adaptive subgradientmethods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12:2121–
2159.

Dugan, Liam, Daphne Ippolito, Arun Kirubarajan, and Chris Callison-Burch. 2020. RoFT:
A tool for evaluating human detection of machine-generated text. In EMNLP 2020, Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, pages 189–196, Association for Computational Linguistics, On-
line.

Ehrlich, Susan F and Keith Rayner. 1981. Contextual effects on word perception and eye
movements during reading. Journal of Verbal Learning and Verbal Behavior, 20(6):641–
655.

Eisape, Tiwalayo, Noga Zaslavsky, and Roger Levy. 2020. Cloze distillation: Improving neu-
ral language models with human next-word prediction. In CoNLL 2020, Proceedings of
the 24th Conference on Computational Natural Language Learning, pages 609–619, Asso-
ciation for Computational Linguistics, Online.

https://www.wordfrequency.info

156 Bibliography

Emami, Ahmad and Frederick Jelinek. 2004. Exact training of a neural syntactic language
model. In ICASSP 2004, Proceedings of the 2004 IEEE International Conference on Acous-
tics, Speech, and Signal Processing, volume 1, pages I–245, Montréal, Quebec, Canada.

Engbert, Ralf, André Longtin, and Reinhold Kliegl. 2002. A dynamical model of saccade
generation in reading based on spatially distributed lexical processing. Vision research,
42(5):621–636.

Ettinger, Allyson. 2020. What BERT is not: Lessons from a new suite of psycholinguistic
diagnostics for language models. Transactions of the Association for Computational Lin-
guistics, 8:34–48.

Filimonov, Denis and Mary Harper. 2009. A joint language model with fine-grain syntactic
tags. In EMNLP 2009, Proceedings of the 2009 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1114–1123, Association for Computational Linguistics,
Singapore.

Finkelstein, Lev, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi Wolf-
man, and Eytan Ruppin. 2002. Placing search in context: The concept revisited. ACM
Transactions on Information Systems, 20(1):116–131.

Flekova, Lucie and Iryna Gurevych. 2016. Supersense embeddings: A unified model for
supersense interpretation, prediction, and utilization. In ACL 2016, Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 2029–2041, Berlin, Germany.

Forster, Kenneth I, Christine Guerrera, and Lisa Elliot. 2009. The Maze task: Measuring
forced incremental sentence processing time. Behavior Research Methods, 41(1):163–171.

Gage, Philip. 1994. A new algorithm for data compression. C Users Journal, 12(2):23–38.

Gers, FelixA., Jürgen Schmidhuber, andFredCummins. 2000. Learning to forget: Continual
prediction with LSTM. Neural Computation, 12(10):2451–2471.

Gers, Felix A,NicolN Schraudolph, and Jürgen Schmidhuber. 2002. Learning precise timing
with LSTM recurrent networks. Journal of Machine Learning Research, 3(Aug):115–143.

Gitari, Njagi Dennis, Zhang Zuping, Hanyurwimfura Damien, and Jun Long. 2015. A
lexicon-based approach for hate speech detection. International Journal of Multimedia
and Ubiquitous Engineering, 10(4):215–230.

Glorot, Xavier and Yoshua Bengio. 2010. Understanding the difficulty of training deep feed-
forward neural networks. In AISTATS 2010, Proceedings of the 13th International Confer-
ence on Artificial Intelligence and Statistics, pages 249–256, Sardinia, Italy.

157

Goodkind, Adam andKlinton Bicknell. 2018. Predictive power of word surprisal for reading
times is a linear function of languagemodel quality. In CMCL 2018, Proceedings of the 8th
Workshop on CognitiveModeling andComputational Linguistics, pages 10–18, Association
for Computational Linguistics, Salt Lake City, Utah.

Goodman, Joshua T. 2001a. A bit of progress in languagemodeling, extended version. Com-
puter Speech and Language, 15(4):403–434.

Goodman, Joshua T. 2001b. Classes for fast maximum entropy training. In ICASSP 2001,
Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and Signal
Processing, volume 1, pages 561–564, Salt Lake City, Utah.

Graff, David andChristopher Cieri. 2003. EnglishGigaword LDC2003T05. WebDownload.
Philadelphia: Linguistic Data Consortium.

Greenberg, Clayton, Vera Demberg, and Asad Sayeed. 2015a. Verb polysemy and frequency
effects in thematic fitmodeling. InCMCL 2015, Proceedings of the 6thWorkshop onCogni-
tiveModeling and Computational Linguistics, pages 48–57, Association for Computational
Linguistics, Denver, Colorado.

Greenberg, Clayton, Vera Demberg, and Asad Sayeed. 2015b. Verb polysemy and frequency
effects in thematic fit modeling. In AMLaP 2015, Architectures and Mechanisms of Lan-
guage Processing, page 158, Valletta, Malta.

Greenberg, Clayton, Asad Sayeed, and Vera Demberg. 2015. Improving unsupervised
vector-space thematic fit evaluation via role-filler prototype clustering. In NAACL-HLT
2015, Proceedings of the 2015 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, pages 21–31, Denver,
Colorado.

Gulordava, Kristina, Piotr Bojanowski, EdouardGrave, Tal Linzen, andMarco Baroni. 2018.
Colorless green recurrent networks dream hierarchically. In NAACL 2018, Proceedings of
the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1195–1205,
New Orleans, Louisiana.

Gurevych, Iryna. 2005. Using the structure of a conceptual network in computing semantic
relatedness. In IJCNLP 2005, Second International Joint Conference on Natural Language
Processing: Full Papers, Jeju Island, South Korea.

Guthrie, David, Ben Allison, Wei Liu, Louise Guthrie, and Yorick Wilks. 2006. A closer
look at skip-gram modelling. In LREC 2006, Proceedings of the Fifth International Confer-
ence on Language Resources and Evaluation, European Language Resources Association
(ELRA), Genoa, Italy.

158 Bibliography

Gutmann, Michael and Aapo Hyvärinen. 2010. Noise-contrastive estimation: A new esti-
mation principle for unnormalized statistical models. In AISTATS 2010, Proceedings of
the 13th International Conference on Artificial Intelligence and Statistics, pages 297–304,
Sardinia, Italy.

Hale, John. 2001. A probabilistic Earley parser as a psycholinguistic model. In NAACL
2001, Second Meeting of the North American Chapter of the Association for Computational
Linguistics, Pittsburgh, Pennsylvania.

Hamilton, William L., Kevin Clark, Jure Leskovec, and Dan Jurafsky. 2016. Inducing
domain-specific sentiment lexicons from unlabeled corpora. In EMNLP 2016, Proceed-
ings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages
595–605, Association for Computational Linguistics, Austin, Texas.

Hatzivassiloglou, Vasileios and Kathleen R. McKeown. 1997. Predicting the semantic ori-
entation of adjectives. In ACL 1997, 35th Annual Meeting of the Association for Com-
putational Linguistics and 8th Conference of the European Chapter of the Association for
Computational Linguistics, pages 174–181, Madrid, Spain.

Heafield, Kenneth. 2011. KenLM: Faster and smaller language model queries. In WMT at
EMNLP 2011, Proceedings of the Sixth Workshop on Statistical Machine Translation, pages
187–197, Association for Computational Linguistics, Edinburgh, Scotland.

Heafield, Kenneth, Ivan Pouzyrevsky, Jonathan H. Clark, and Philipp Koehn. 2013. Scalable
modified Kneser-Ney language model estimation. In ACL 2013, Proceedings of the 51st
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
pages 690–696, Sofia, Bulgaria.

Hermann, Karl Moritz and Phil Blunsom. 2014. Multilingual models for compositional
distributed semantics. In ACL 2014, Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers), pages 58–68, Baltimore,
Maryland.

Hochreiter, Sepp and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Com-
putation, 9(8):1735–1780.

Hohenstein, Sven,HannesMatuschek, andReinholdKliegl. 2017. Linked linearmixedmod-
els: A joint analysis of fixation locations and fixation durations in natural reading. Psy-
chonomic Bulletin and Review, 24(3):637–665.

Hollenstein, Nora, Maria Barrett, and Lisa Beinborn. 2020. Towards best practices for lever-
aging human language processing signals for natural language processing. In LiNCr 2020,
Proceedings of the Second Workshop on Linguistic and Neurocognitive Resources, pages 15–
27, European Language Resources Association, Marseille, France.

159

Hollenstein, Nora and Lisa Beinborn. 2021. Relative importance in sentence processing. In
ACL 2021, Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 141–150, Online.

Hollenstein, Nora, Emmanuele Chersoni, Cassandra Jacobs, Yohei Oseki, Laurent Prévot,
and Enrico Santus. 2022a. CMCL 2022 shared task on multilingual and crosslingual pre-
diction of human reading behavior. In CMCL 2022, Proceedings of the Workshop on Cog-
nitive Modeling and Computational Linguistics, pages 121–129, Association for Compu-
tational Linguistics, Dublin, Ireland.

Hollenstein, Nora, Emmanuele Chersoni, Cassandra L. Jacobs, Yohei Oseki, Laurent Prévot,
and Enrico Santus. 2021a. CMCL 2021 shared task on eye-tracking prediction. In CMCL
2021, Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics,
pages 72–78, Association for Computational Linguistics, Online.

Hollenstein, Nora, Itziar Gonzalez-Dios, Lisa Beinborn, and Lena Jäger. 2022b. Patterns of
text readability in human and predicted eye movements. In CogALex 2022, Proceedings
of the Workshop on Cognitive Aspects of the Lexicon, pages 1–15, Association for Compu-
tational Linguistics, Taipei, Taiwan.

Hollenstein, Nora, Federico Pirovano, Ce Zhang, Lena Jäger, and Lisa Beinborn. 2021b.
Multilingual language models predict human reading behavior. In NAACL 2021, Pro-
ceedings of the 2021 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pages 106–123, Online.

Hollenstein, Nora, Jonathan Rotsztejn, Marius Troendle, Andreas Pedroni, Ce Zhang, and
Nicolas Langer. 2018. ZuCo, a simultaneous EEG and eye-tracking resource for natural
sentence reading. Scientific Data, 5(180291):1–13.

Hollenstein, Nora, Marius Troendle, Ce Zhang, and Nicolas Langer. 2020. ZuCo 2.0: A
dataset of physiological recordings during natural reading and annotation. In LREC 2020,
Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 138–146,
European Language Resources Association, Marseille, France.

Hu, Jennifer, Jon Gauthier, Peng Qian, Ethan Wilcox, and Roger Levy. 2020. A systematic
assessment of syntactic generalization in neural language models. In ACL 2020, Proceed-
ings of the 58th Annual Meeting of the Association for Computational Linguistics, pages
1725–1744, Online.

Huffman, David A. 1952. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098–1101.

Ippolito, Daphne, Reno Kriz, João Sedoc, Maria Kustikova, and Chris Callison-Burch. 2019.
Comparison of diverse decoding methods from conditional language models. In ACL

160 Bibliography

2019, Proceedings of the 57th Annual Meeting of the Association for Computational Lin-
guistics, pages 3752–3762, Florence, Italy.

Jaccard, Paul. 1912. The distribution of the flora in the Alpine Zone. New Phytologist,
11(2):37–50.

Jaffe, Evan, Byung-Doh Oh, and William Schuler. 2021. Coreference-aware surprisal pre-
dicts brain response. In EMNLP 2021, Findings of the Association for Computational Lin-
guistics, pages 3351–3356, Association for Computational Linguistics, Punta Cana, Do-
minican Republic.

Jaffe, Evan, Cory Shain, and William Schuler. 2020. Coreference information guides human
expectations during natural reading. In COLING 2020, Proceedings of the 28th Interna-
tional Conference on Computational Linguistics, pages 4587–4599, International Commit-
tee on Computational Linguistics, Barcelona, Spain (Online).

Jaro, Matthew A. 1989. Advances in record-linkage methodology as applied to match-
ing the 1985 census of Tampa, Florida. Journal of the American Statistical Association,
84(406):414–420.

Jindal, Nitin and Bing Liu. 2008. Opinion spam and analysis. In WSDM 2008, Proceedings of
the 2008 International Conference on Web Search and Data Mining, pages 219–230, Palo
Alto, California.

Joachims, Thorsten. 1999. Making large-scale support vector machine learning practical. In
Christopher J.C. Burges, Bernhard Schölkopf, and Alexander J. Smola, editors, Advances
in Kernel Methods: Support Vector Learning. MIT Press, pages 169–184.

Joulin, Armand, Edouard Grave, Piotr Bojanowski, and Tomáš Mikolov. 2017. Bag of tricks
for efficient text classification. In EACL 2017, Proceedings of the 15th Conference of the
EuropeanChapter of theAssociation for Computational Linguistics: Volume 2, Short Papers,
pages 427–431, Valencia, Spain.

Jozefowicz, Rafal, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. 2016. Ex-
ploring the limits of language modeling. arXiv preprint arXiv:1602.02410.

Just, Marcel A, Patricia A Carpenter, and Jacqueline D Woolley. 1982. Paradigms and
processes in reading comprehension. Journal of Experimental Psychology: General,
111(2):228–238.

Kang, Jun Seok, Song Feng, Leman Akoglu, and Yejin Choi. 2014. ConnotationWordNet:
Learning connotation over the Word+Sense network. In ACL 2014, Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1544–1554, Baltimore, Maryland.

161

Katz, Slava. 1987. Estimation of probabilities from sparse data for the language model com-
ponent of a speech recognizer. IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, 35(3):400–401.

Kennedy, Alan and Joël Pynte. 2005. Parafoveal-on-foveal effects in normal reading. Vision
Research, 45(2):153–168.

Kim, Yoon, Yacine Jernite, David Sontag, and Alexander M Rush. 2016. Character-aware
neural language models. In AAAI 2016, Thirtieth AAAI Conference on Artificial Intelli-
gence, pages 2741–2749, Phoenix, Arizona.

Kirchenbauer, John, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Gold-
stein. 2023. A watermark for large language models. In ICML 2023, Proceedings of the
40th International Conference on Machine Learning, Honolulu, Hawaii.

Klakow, Dietrich. 1998. Log-linear interpolation of language models. In ICSLP 1998, Pro-
ceedings of the 5th International Conference on Spoken Language Processing, pages 1695–
1698, Sydney, Australia.

Klakow, Dietrich and Jochen Peters. 2002. Testing the correlation of word error rate and
perplexity. Speech Communication, 38(1-2):19–28.

Kliegl, Reinhold, Ellen Grabner, Martin Rolfs, and Ralf Engbert. 2004. Length, frequency,
and predictability effects of words on eye movements in reading. European Journal of
Cognitive Psychology, 16(1):262–284.

Kliegl, Reinhold, Antje Nuthmann, and Ralf Engbert. 2006. Tracking themind during read-
ing: the influence of past, present, and future words on fixation durations. Journal of
Experimental Psychology: General, 135(1):13–35.

Kneser, Reinhard and Hermann Ney. 1995. Improved backing-off for m-gram language
modeling. In ICASSP 1995, International Conference on Acoustics, Speech, and Signal
Processing, volume 1, pages 181–184, IEEE, Detroit, Michigan.

Kuhn, Roland and Renato De Mori. 1990. A cache-based natural languagemodel for speech
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(6):570–
583.

Kuncoro, Adhiguna, Chris Dyer, John Hale, Dani Yogatama, Stephen Clark, and Phil Blun-
som. 2018. LSTMs can learn syntax-sensitive dependencies well, but modeling structure
makes them better. In ACL 2018, Proceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pages 1426–1436,Melbourne,
Australia.

Kutas, Marta and Steven A Hillyard. 1980. Reading senseless sentences: Brain potentials
reflect semantic incongruity. Science, 207(4427):203–205.

162 Bibliography

Le, Hai Son, Alexandre Allauzen, and François Yvon. 2012. Measuring the influence of
long range dependencies with neural network language models. In Proceedings of the
NAACL-HLT 2012 Workshop: Will We Ever Really Replace the N-gram Model? On the
Future of Language Modeling for HLT, pages 1–10, Association for Computational Lin-
guistics, Montréal, Quebec, Canada.

Levshina, Natalia. 2022. Frequency, informativity and word length: Insights from typolog-
ically diverse corpora. Entropy, 24(2):280.

Likert, Rensis. 1932. A technique for the measurement of attitudes. Archives of Psychology,
22(140).

Linzen, Tal, Emmanuel Dupoux, and Yoav Goldberg. 2016. Assessing the ability of LSTMs
to learn syntax-sensitive dependencies. TACL, Transactions of the Association for Com-
putational Linguistics, 4:521–535.

Linzen, Tal and Brian Leonard. 2018. Distinct patterns of syntactic agreement errors in re-
current networks and humans. In CogSci 2018, Proceedings of the 40th Annual Conference
of the Cognitive Science Society, pages 692–697, Madison, Wisconsin.

Liu, Yinhan, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly opti-
mized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Lodhi, Huma, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris Watkins.
2002. Text classification using string kernels. Journal of Machine Learning Research,
2(Feb):419–444.

Logan, Beth, Pedro Moreno, Jean-Manuel Van Thong, Ed Whittaker, Jean manuel Van, and
Thong Whittaker. 1996. An experimental study of an audio indexing system for the web.
In ICSLP 1996, Proceedings of the 4th International Conference on Spoken Language Pro-
cessing, pages 676–679, Philadelphia, Pennsylvania.

Logan, Beth, Jean-Manuel Van Thong, and Pedro J. Moreno. 2005. Approaches to reduce
the effects of OOV queries on indexed spoken audio. IEEE Transactions on Multimedia,
7(5):899–906.

Luke, Steven G and Kiel Christianson. 2018. The Provo Corpus: A large eye-tracking corpus
with predictability norms. Behavior Research Methods, 50(2):826–833.

Luong, Thang, Richard Socher, and Christopher Manning. 2013. Better word representa-
tions with recursive neural networks for morphology. In CoNLL 2013, Proceedings of the
Seventeenth Conference on Computational Natural Language Learning, pages 104–113,
Association for Computational Linguistics, Sofia, Bulgaria.

163

Mahoney, Matt. 2011. Large text compression benchmark. http://mattmahoney.net/
dc/textdata.html.

Marshall, Sandra P. 2002. The index of cognitive activity: measuring cognitive workload. In
Proceedings of the IEEE 7th Conference on Human Factors and Power Plants, 7, pages 5–9,
Scottsdale, Arizona.

Marvin, Rebecca and Tal Linzen. 2018. Targeted syntactic evaluation of languagemodels. In
EMNLP 2018, Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1192–1202, Association for Computational Linguistics, Brussels,
Belgium.

McCandless, Michael, Erik Hatcher, and Otis Gospodnetic. 2010. Lucene in Action, Second
Edition: Covers Apache Lucene 3.0. Manning Publications Co., Greenwich, Connecticut.

Meng, Fandong, Zhengdong Lu, Zhaopeng Tu, Hang Li, and Qun Liu. 2016. A deep
memory-based architecture for sequence-to-sequence learning. In ICLR 2016, Workshop
Proceedings of the International Conference on Learning Representations, San Juan, Puerto
Rico.

Merity, Stephen, Caiming Xiong, James Bradbury, and Richard Socher. 2016. Pointer sen-
tinel mixture models. arXiv preprint arXiv:1609.07843.

Meylan, Stephan C and Thomas L Griffiths. 2021. The challenges of large-scale, web-
based language datasets: Word length and predictability revisited. Cognitive Science,
45(6):e12983.

Mikolov, Tomáš, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of
word representations in vector space. In ICLR 2013, Workshop Proceedings of the Inter-
national Conference on Learning Representations, pages 3111–3119, Scottsdale, Arizona.

Mikolov, Tomáš, Anoop Deoras, Stefan Kombrink, Lukáš Burget, and Jan Černocký. 2011a.
Empirical evaluation and combination of advanced languagemodeling techniques. In IN-
TERSPEECH 2011, Proceedings of the 12th Annual Conference of the International Speech
Communication Association, pages 605–608, Florence, Italy.

Mikolov, Tomáš, Anoop Deoras, Daniel Povey, Lukáš Burget, and Jan Černocký. 2011b.
Strategies for training large scale neural network language models. In ASRU 2011, Pro-
ceedings of the 2011 IEEE Workshop on Automatic Speech Recognition Understanding,
pages 196–201, Waikoloa, Hawaii.

Mikolov, Tomáš, Martin Karafiát, Lukáš Burget, Jan Černocký, and Sanjeev Khudanpur.
2010. Recurrent neural network based language model. In INTERSPEECH 2010, Pro-
ceedings of the 11th Annual Conference of the International Speech Communication Asso-
ciation, pages 1045–1048, Makuhari, Chiba, Japan.

http://mattmahoney.net/dc/textdata.html
http://mattmahoney.net/dc/textdata.html

164 Bibliography

Mikolov, Tomáš, Stefan Kombrink, Lukáš Burget, Jan Černocký, and Sanjeev Khudanpur.
2011c. Extensions of recurrent neural network language model. In ICASSP 2011, Pro-
ceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing,
pages 5528–5531, Prague, Czech Republic.

Mikolov, Tomáš and Geoffrey Zweig. 2012. Context dependent recurrent neural network
language model. In SLT 2012, Proceedings of the 2012 IEEE Spoken Language Technology
Workshop, pages 234–239, Miami, Florida.

Miller, George A, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Katherine J
Miller. 1990. Introduction toWordNet: An on-line lexical database. International Journal
of Lexicography, 3(4):235–244.

Minixhofer, Benjamin. 2020. GerPT2: German large and small versions of GPT2.

Minixhofer, Benjamin, Fabian Paischer, and Navid Rekabsaz. 2022. WECHSEL: Effective
initialization of subword embeddings for cross-lingual transfer of monolingual language
models. In NAACL 2022, Proceedings of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies, pages
3992–4006, Seattle, United States.

Mnih, Andriy and Geoffrey Hinton. 2007. Three new graphical models for statistical lan-
guage modelling. In ICML 2007, Proceedings of the 24th International Conference on Ma-
chine Learning, page 641–648, Association for Computing Machinery, Corvalis, Oregon.

Mohammad, Saif. 2012. Portable features for classifying emotional text. In NAACL 2012,
Proceedings of the 2012 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 587–591, Montréal,
Quebec, Canada.

Mohammad, Saif M and Peter D Turney. 2013. Crowdsourcing a word–emotion association
lexicon. Computational Intelligence, 29(3):436–465.

Momtazi, Saeedeh, Friedrich Faubel, and Dietrich Klakow. 2010. Within and across sen-
tence boundary language model. In INTERSPEECH 2010, Proceedings of the 11th Annual
Conference of the International Speech Communication Association, pages 1800–1803,
Makuhari, Japan.

Ney, Hermann, Sven Martin, and Frank Wessel. 1997. Statistical language modeling using
leaving-one-out. In Corpus-based methods in Language and Speech processing. Springer,
pages 174–207.

Nobata, Chikashi, Joel Tetreault, AchintThomas, YasharMehdad, and Yi Chang. 2016. Abu-
sive language detection in online user content. In WWW 2016, Proceedings of the 25th
International Conference on World Wide Web, pages 145–153, Geneva, Switzerland.

165

Norvig, Peter. 2009. Natural language corpus data. In Toby Segaran and JeffHammerbacher,
editors, Beautiful Data. O’Reilly Media, pages 219–242.

Oh, Byung-Doh, Christian Clark, and William Schuler. 2021. Surprisal estimators for hu-
man reading times need character models. In ACL 2021, Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pages 3746–3757,
Online.

Oh, Byung-Doh, Christian Clark, and William Schuler. 2022. Comparison of structural
parsers and neural language models as surprisal estimators. Frontiers in Artificial Intelli-
gence, 5:777963.

Oh, Byung-Doh and William Schuler. 2023. Why does surprisal from larger transformer-
based language models provide a poorer fit to human reading times? Transactions of the
Association for Computational Linguistics, 11:336–350.

Osterhout, Lee and Phillip J Holcomb. 1992. Event-related brain potentials elicited by syn-
tactic anomaly. Journal of Memory and Language, 31(6):785–806.

Oualil, Youssef, Clayton Greenberg, Mittul Singh, and Dietrich Klakow. 2016a. Sequential
recurrent neural networks for languagemodeling. In INTERSPEECH 2016, Proceedings of
the 17th Annual Conference of the International Speech Communication Association, pages
3509–3513, San Francisco, California.

Oualil, Youssef, Mittul Singh, Clayton Greenberg, and Dietrich Klakow. 2016b. Long-short
range context neural networks for languagemodeling. In EMNLP 2016, Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, pages 1473–1481,
Association for Computational Linguistics, Austin, Texas.

Pascanu, Razvan, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. 2014. How to
construct deep recurrent neural networks. In ICLR 2014, Conference Proceedings of the
International Conference on Learning Representations, Banff, Canada.

Pavlopoulos, John, Prodromos Malakasiotis, and Ion Androutsopoulos. 2017. Deeper at-
tention to abusive user content moderation. In EMNLP 2017, Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, pages 1125–1135, As-
sociation for Computational Linguistics, Copenhagen, Denmark.

Piantadosi, Steven T, Harry Tily, and Edward Gibson. 2011. Word lengths are optimized for
efficient communication. Proceedings of the National Academy of Sciences, 108(9):3526–
3529.

Radford, Alec, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018. Improving
language understanding by generative pre-training. OpenAI.

166 Bibliography

Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
2019. Language models are unsupervised multitask learners. OpenAI Blog, 1(8):9.

Rayner, Keith, Jane Ashby, Alexander Pollatsek, and Erik D Reichle. 2004. The effects
of frequency and predictability on eye fixations in reading: implications for the EZ
reader model. Journal of Experimental Psychology: Human Perception and Performance,
30(4):720–732.

Rayner, Keith and Arnold D Well. 1996. Effects of contextual constraint on eye movements
in reading: A further examination. Psychonomic Bulletin and Review, 3(4):504–509.

Razavi, Amir H, Diana Inkpen, Sasha Uritsky, and Stan Matwin. 2010. Offensive language
detection usingmulti-level classification. In In Proceedings of the Canadian Conference on
Artificial Intelligence, pages 16–27, Ottawa, Canada.

Rill, Sven, Jörg Scheidt, Johannes Drescher, Oliver Schütz, Dirk Reinel, and Florian Wogen-
stein. 2012. A generic approach to generate opinion lists of phrases for opinion mining
applications. In WISDOM 2012, Proceedings of the First International Workshop on Issues
of Sentiment Discovery and Opinion Mining, pages 1–8, Beijing, China.

Rosenfeld, Ronald. 1996. A maximum entropy approach to adaptive statistical language
modeling. Computer Speech and Language, 10:187–228.

Rosenfeld, Ronald. 2000. Two decades of statistical language modeling: Where do we go
from here? Proceedings of the IEEE, 88(8):1270–1278.

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams. 1986. Learning internal
representations by error propagation. In David E Rumelhart and James L McClelland,
editors, Parallel Distributed Processing: Explorations in the Microstructure of Cognition.
MIT Press, Cambridge, pages 318–362.

Ruppenhofer, Josef, Michael Wiegand, and Jasper Brandes. 2014. Comparing methods for
deriving intensity scores for adjectives. In EACL 2014, Proceedings of the 14th Conference
of the European Chapter of the Association for Computational Linguistics, Volume 2: Short
Papers, pages 117–122, Gothenburg, Sweden.

Saffran, Jenny R, Richard N Aslin, and Elissa L Newport. 1996. Statistical learning by 8-
month-old infants. Science, 274(5294):1926–1928.

Safi Samghabadi, Niloofar, Suraj Maharjan, Alan Sprague, Raquel Diaz-Sprague, and
Thamar Solorio. 2017. Detecting nastiness in social media. In Proceedings of the First
ACL Workshop on Abusive Language Online, pages 63–72, Association for Computational
Linguistics, Vancouver, BC, Canada.

167

Salicchi, Lavinia, RongXiang, andYu-YinHsu. 2022. HkAmsters at CMCL2022 shared task:
Predicting eye-tracking data from a gradient boosting framework with linguistic features.
In CMCL 2022, Proceedings of the Workshop on Cognitive Modeling and Computational
Linguistics, pages 114–120, Association for Computational Linguistics, Dublin, Ireland.

Saon, George, Gakuto Kurata, Tom Sercu, Kartik Audhkhasi, Samuel Thomas, Dimitrios
Dimitriadis, Xiaodong Cui, Bhuvana Ramabhadran, Michael Picheny, Lynn-Li Lim,
Bergul Roomi, and Phil Hall. 2017. English conversational telephone speech recognition
by humans and machines. arXiv preprint arXiv:1703.02136.

Sayeed, Asad, Clayton Greenberg, and Vera Demberg. 2016. Thematic fit evaluation: an
aspect of selectional preferences. In RepEval 2016, Proceedings of the 1st Workshop on
Evaluating Vector-Space Representations for NLP, pages 99–105, Association for Compu-
tational Linguistics, Berlin, Germany.

van Schijndel, Marten and Tal Linzen. 2018. A neural model of adaptation in reading. In
EMNLP 2018, Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 4704–4710, Association for Computational Linguistics, Brussels,
Belgium.

van Schijndel, Marten and William Schuler. 2015. Hierarchic syntax improves reading time
prediction. In NAACL 2015, Proceedings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 1597–1605, Denver, Colorado.

van Schijndel, Marten and William Schuler. 2016. Addressing surprisal deficiencies in read-
ing time models. In CL4LC 2016, Proceedings of the Workshop on Computational Linguis-
tics for Linguistic Complexity, pages 32–37, The COLING 2016 Organizing Committee,
Osaka, Japan.

van Schijndel, Marten and William Schuler. 2017. Approximations of predictive entropy
correlate with reading times. In CogSci 2017, Proceedings of the 39th Annual Conference
of the Cognitive Science Society, pages 1260–1265, London, United Kingdom.

Schmidt, Anna andMichaelWiegand. 2017. A survey on hate speech detection using natural
language processing. In SocialNLP 2017, Proceedings of the Fifth International Workshop
on Natural Language Processing for Social Media, pages 1–10, Association for Computa-
tional Linguistics, Valencia, Spain.

Schneider, Walter, Amy Eschman, and Anthony Zuccolotto. 2002. E-Prime: User’s Guide.
Psychology Software Tools, Incorporated, Pittsburgh, Pennsylvania.

Schwenk, Holger and Jean-LucGauvain. 2005. Training neural network languagemodels on
very large corpora. In HLT 2005, Proceedings of Human Language Technology Conference

168 Bibliography

and Conference on Empirical Methods in Natural Language Processing, pages 201–208, As-
sociation for Computational Linguistics, Vancouver, British Columbia, Canada.

Seker, Sadi Evren, Oguz Altun, Uğur Ayan, and Cihan Mert. 2014. A novel string distance
function based on most frequent k characters. International Journal of Machine Learning
and Computation, 4(2):177–183.

Sennrich, Rico, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of
rare words with subword units. In ACL 2016, Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany.

Shannon, Claude E. 1951. Prediction and entropy of printed English. Bell System Technical
Journal, 30(1):50–64.

Shen, Xiaoyu, Youssef Oualil, Clayton Greenberg, Mittul Singh, and Dietrich Klakow. 2017.
Estimation of gap between current language models and human performance. In IN-
TERSPEECH 2017, Proceedings of the 18th Annual Conference of the International Speech
Communication Association, pages 553–557, Stockholm, Sweden.

Sikos, Les, Clayton Greenberg, Heiner Drenhaus, and Matthew Crocker. 2017. Information
density of encodings: the role of syntactic variation in comprehension. In CogSci 2017,
Proceedings of the 39th Annual Conference of the Cognitive Science Society, pages 3168–
3173, London, United Kingdom.

Singh, Mittul, Clayton Greenberg, and Dietrich Klakow. 2016. The custom decay language
model for long range dependencies. In TSD 2016, Proceedings of the 19th International
Conference on Text, Speech, and Dialogue, pages 343–351, Springer International Publish-
ing, Brno, Czech Republic.

Singh, Mittul, Clayton Greenberg, Youssef Oualil, and Dietrich Klakow. 2016. Sub-word
similarity based search for embeddings: Inducing rare-word embeddings for word sim-
ilarity tasks and language modelling. In COLING 2016, Proceedings of the 26th Interna-
tional Conference on Computational Linguistics, pages 2061–2070, Osaka, Japan.

Singh, Mittul and Dietrich Klakow. 2013. Comparing RNNs and log-linear interpolation of
improved skip-model on four Babel languages: Cantonese, Pashto, Tagalog, Turkish. In
ICASSP 2013, Proceedings of the 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 8416–8420, Vancouver, British Columbia, Canada.

Smith, Nathaniel and Roger Levy. 2011. Cloze but no cigar: The complex relationship be-
tween cloze, corpus, and subjective probabilities in language processing. In CogSci 2011,
Proceedings of the 33rd Annual Conference of the Cognitive Science Society, pages 1637–
1642, Boston, Massachusetts.

169

Socher, Richard, Eric Huang, Jeffrey Pennin, Christopher D Manning, and Andrew Ng.
2011. Dynamic pooling and unfolding recursive autoencoders for paraphrase detection.
InNeurIPS 2011, Advances inNeural Information Processing Systems, volume 24, Granada,
Spain.

Socher, Richard, Brody Huval, Christopher D.Manning, and Andrew Y. Ng. 2012. Semantic
compositionality through recursivematrix-vector spaces. In EMNLP 2012, Proceedings of
the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Com-
putational Natural Language Learning, pages 1201–1211, Association for Computational
Linguistics, Jeju Island, South Korea.

Soricut, Radu and Franz Och. 2015. Unsupervised morphology induction using word em-
beddings. In NAACL 2015, Proceedings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 1627–1637, Denver, Colorado.

Steiger, James H. 1980. Tests for comparing elements of a correlation matrix. Psychological
bulletin, 87(2):245.

Stolcke, Andreas. 2002. SRILM - an extensible language modeling toolkit. In ICSLP 2002,
Proceedings of the 7th International Conference on Spoken Language Processing, pages 901–
904, Denver, Colorado.

Sundermeyer, Martin, Hermann Ney, and Ralf Schlüter. 2015. From feedforward to re-
current lstm neural networks for language modeling. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 23(3):517–529.

Sundermeyer, Martin, Ralf Schlüter, and Hermann Ney. 2012. LSTM neural networks for
languagemodeling. In INTERSPEECH 2012, Proceedings of the 13th Annual Conference of
the International Speech Communication Association, pages 194–197, Portland, Oregon.

Talukdar, Partha Pratim, Joseph Reisinger, Marius Paşca, Deepak Ravichandran, Rahul Bha-
gat, and Fernando Pereira. 2008. Weakly-supervised acquisition of labeled class instances
using graph random walks. In EMNLP 2008, Proceedings of the 2008 Conference on Em-
pirical Methods in Natural Language Processing, pages 582–590, Association for Compu-
tational Linguistics, Honolulu, Hawaii.

Taylor,Wilson L. 1953. “Cloze procedure”: A new tool formeasuring readability. Journalism
Quarterly, 30(4):415–433.

Tian, Edward. 2023a. gptzero update v1. Substack.

Tian, Edward. 2023b. new year, new features, new model. Substack.

170 Bibliography

Toutanova, Kristina, Dan Klein, Christopher D.Manning, and Yoram Singer. 2003. Feature-
rich part-of-speech tagging with a cyclic dependency network. In NAACL 2003, Proceed-
ings of the 2003 Human Language Technology Conference of the North American Chapter
of the Association for Computational Linguistics, pages 252–259.

Tran, Ke, Arianna Bisazza, and Christof Monz. 2018. The importance of being recurrent
for modeling hierarchical structure. In EMNLP 2018, Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pages 4731–4736, Association for
Computational Linguistics, Brussels, Belgium.

Turing, Alan M. 1950. Computing machinery and intelligence. Mind, 59(236):433–460.

Tversky, Amos. 1977. Features of similarity. Psychological review, 84(4):327–352.

Vaswani, Ashish, NoamShazeer, Niki Parmar, JakobUszkoreit, Llion Jones, AidanNGomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In NeurIPS 2017,
Advances in Neural Information Processing Systems, volume 30, Long Beach, California.

Velikovich, Leonid, Sasha Blair-Goldensohn, Kerry Hannan, and Ryan McDonald. 2010.
The viability of web-derived polarity lexicons. In NAACL 2010, Human Language Tech-
nologies: The 2010 Annual Conference of the North American Chapter of the Association
for Computational Linguistics, pages 777–785, Los Angeles, California.

Warner, William and Julia Hirschberg. 2012. Detecting hate speech on the world wide web.
In LSM 2012, Proceedings of the Second Workshop on Language in Social Media, pages
19–26, Association for Computational Linguistics, Montréal, Quebec, Canada.

Waseem, Zeerak, Thomas Davidson, Dana Warmsley, and Ingmar Weber. 2017. Under-
standing abuse: A typology of abusive language detection subtasks. In Proceedings of the
First ACL Workshop on Abusive Language Online, pages 78–84, Association for Compu-
tational Linguistics, Vancouver, BC, Canada.

Waseem, Zeerak and Dirk Hovy. 2016. Hateful symbols or hateful people? predictive fea-
tures for hate speech detection on Twitter. In NAACL SRW 2016, Proceedings of the
NAACL Student Research Workshop, pages 88–93, Association for Computational Lin-
guistics, San Diego, California.

Wei, Jason, Dan Garrette, Tal Linzen, and Ellie Pavlick. 2021. Frequency effects on syntactic
rule learning in transformers. In EMNLP 2021, Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pages 932–948, Association for Com-
putational Linguistics, Punta Cana, Dominican Republic.

Wiegand, Michael, Christine Bocionek, and Josef Ruppenhofer. 2016. Opinion holder and
target extraction on opinion compounds – a linguistic approach. In NAACL 2016, Pro-
ceedings of the 2016 Conference of the North American Chapter of the Association for Com-
putational Linguistics, pages 800–810, San Diego, California.

171

Wiegand, Michael, Manfred Klenner, and Dietrich Klakow. 2013. Bootstrapping polarity
classifiers with rule-based classification. Language Resources and Evaluation, 47(4):1049–
1088.

Wiegand,Michael, Josef Ruppenhofer, Anna Schmidt, andClaytonGreenberg. 2018. Induc-
ing a lexicon of abusive words – a feature-based approach. InNAACL 2018, Proceedings of
the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 1046–1056, New Orleans, Louisiana.

Wiegand,Michael,Marc Schulder, and Josef Ruppenhofer. 2016. Separating actor-view from
speaker-view opinion expressions using linguistic features. In NAACL 2016, Proceedings
of the 2016 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 778–788, San Diego, California.

Wilcox, Ethan Gotlieb, Jon Gauthier, Jennifer Hu, Peng Qian, and Roger Levy. 2020. On the
predictive power of neural language models for human real-time comprehension behav-
ior. In CogSci 2020, Proceedings of the 42nd Annual Conference of the Cognitive Science
Society, pages 1707–1713, Online.

Wilson, Theresa, Janyce Wiebe, and Paul Hoffmann. 2005. Recognizing contextual polarity
in phrase-level sentiment analysis. In HLT 2005, Proceedings of Human Language Tech-
nology Conference and Conference on Empirical Methods in Natural Language Processing,
pages 347–354, Association for Computational Linguistics, Vancouver, British Columbia,
Canada.

Winkler, William E. 1990. String comparator metrics and enhanced decision rules in the
Fellegi-Sunter model of record linkage. In Proceedings of the Section on Survey Research
Methods, page 354–359, American Statistical Association.

Witzel, Naoko, Jeffrey Witzel, and Kenneth Forster. 2012. Comparisons of online reading
paradigms: Eye tracking, moving-window, andmaze. Journal of Psycholinguistic Research,
41(2):105–128.

Wolf, Thomas, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, An-
thony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam
Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. 2020.
Transformers: State-of-the-art natural language processing. In EMNLP 2020, Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Association for Computational Linguistics, Online.

Wulczyn, Ellery, Nithum Thain, and Lucas Dixon. 2017. Ex machina: Personal attacks seen
at scale. In WWW 2017, Proceedings of the 26th International Conference on World Wide
Web, pages 1391–1399, Perth, Australia.

172 Bibliography

Xiang, Guang, Bin Fan, Ling Wang, Jason Hong, and Carolyn Rose. 2012. Detecting of-
fensive tweets via topical feature discovery over a large scale Twitter corpus. In CIKM
2012, Proceedings of the 21st ACM International Conference on Information and Knowl-
edge Management, pages 1980–1984, Maui, Hawaii.

Xiong, Wayne, Jasha Droppo, Xuedong Huang, Frank Seide, Mike Seltzer, Andreas Stolcke,
Dong Yu, and Geoffrey Zweig. 2016. Achieving human parity in conversational speech
recognition. arXiv preprint arXiv:1610.05256.

Xu, Peng and Frederick Jelinek. 2007. Random forests and the data sparseness problem in
language modeling. Computer Speech and Language, 21(1):105–152.

Yang, Yiming, Hanxiao Liu, Jaime Carbonell, and Wanli Ma. 2015. Concept graph learn-
ing from educational data. In WSDM 2015, Proceedings of the Eighth ACM International
Conference on Web Search and Data Mining, page 159–168, Association for Computing
Machinery, Shanghai, China.

Zesch, Torsten and Iryna Gurevych. 2006. Automatically creating datasets for measures of
semantic relatedness. In Proceedings of the Workshop on Linguistic Distances, pages 16–24,
Association for Computational Linguistics, Sydney, Australia.

Zhang, ShiLiang, Hui Jiang, MingBin Xu, JunFeng Hou, and LiRong Dai. 2015. The fixed-
size ordinally-forgetting encoding method for neural network language models. In ACL
2015, Proceedings of the 53rd AnnualMeeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Natural Language Processing (Volume 2:
Short Papers), pages 495–500, Beijing, China.

Zhang, Susan, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan,MonaDiab, Xian Li, Xi Victoria Lin, TodorMihaylov, Myle Ott, Sam
Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, TianluWang, and
Luke Zettlemoyer. 2022. OPT: Open pre-trained transformer language models. arXiv
preprint: arXiv 2205.01068.

Zhong, Haoti, Hao Li, Anna Cinzia Squicciarini, Sarah Michele Rajtmajer, Christopher
Griffin, David J Miller, and Cornelia Caragea. 2016. Content-driven detection of cyber-
bullying on the Instagram social network. In IJCAI 2016, Proceedings of the International
Joint Conference on Artificial Intelligence, pages 3952–3958, New York, New York.

Zipf, George Kingsley. 1936. The Psychobiology of Language. Routledge.

Zipf, George Kingsley. 1949. Human Behavior and the Principle of Least Effort. Addison-
Wesley.

Zouhar, Vilém, ClaraMeister, JuanGastaldi, LiDu, TimVieira,Mrinmaya Sachan, andRyan
Cotterell. 2023. A formal perspective on byte-pair encoding. In Findings of the Association
for Computational Linguistics: ACL 2023, pages 598–614, Toronto, Canada.

	List of Figures
	List of Tables
	I Characterizing knowledge in language models
	Introduction: language models assign numbers to words
	A brief history of language modeling, in three parts
	n-grams and long distance dependencies
	Neural network language models
	Transformers

	Measures of human behavior
	Structure of the thesis

	Language models can mimic human burstiness
	Introduction and Background
	Custom Decay Language Models
	Language modeling experiments
	Results and Discussion
	CDLM robustness analysis
	Perplexity results

	Conclusion

	Language models can make specialized meaning representations of words
	Introduction
	Neural network language models
	Feedforward neural networks
	Recurrent neural networks

	Sequential Recurrent Neural Network
	The SRNN neural architecture
	SRNN training

	Experimental setup
	PTB experiments
	LTCB experiments

	Word embedding evaluation
	Results
	Conclusion and outlook

	Language models can be optimized for cohesion
	Introduction
	Short vs. long context language models
	Short range context
	Long range context

	Multi-span language models
	Long-Short Range Context network

	Context range estimation
	Experiments and results
	Experimental setup
	PTB experiments
	LTCB experiments

	Conclusion and synthesizing discussion

	Language models can use spelling to approximate the meanings of words
	Introduction and background
	Inducing Rare Word Embeddings
	Correlations with human word similarity scores
	Perplexity Experiments
	Long tail analysis
	What's in the tail?
	When does SWordSS help?

	Conclusion

	Some linguistic patterns that language models failed to capture
	Introduction
	Related Work
	Data
	Feature Calibration
	Polar Intensity (INT)
	Sentiment Views (VIEW)
	Emotion Categories (NRC)
	Patterns (PAT)
	WordNet (WN) and Wiktionary (WK)
	FrameNet (FN)
	Generic Features: Word Embeddings
	Baselines to Feature-based Approach
	Evaluation of Features on Base Lexicon

	Expanding the Lexicon
	Cross-domain Classification
	Motivation and Set Up
	Results
	Explicitly vs. Implicitly Abusive Microposts

	Conclusion

	II Relating language models and human behavior measures
	An experiment on distinguishing human-written and LM-written text
	Introduction
	Language Models
	Human Judgement
	Experiments and Results
	Uncertainty of Data
	Metric-based Performance
	Human Judgement Score

	Conclusion

	LMs capture varying amounts of word length and frequency information
	Background
	Common methods
	Results and Discussion

	Perplexity is sometimes dissociated from fit to psychometric data
	Background and common methods
	Measures based on eye-tracking fixation durations
	Datasets
	Previous frameworks for evaluating language models
	Survey of successful predictors

	Coefficients for linear mixed effects models
	G-Maze response time >TFT >FPRT >FFD
	Dedicated handling of part of speech does not reduce the dissociation
	Discussion and Conclusions

	Computational evidence for the divergence
	A novel German G-Maze corpus
	Psychometric predictive power and perplexity
	A custom language modeling corpus
	Results for n-gram, RNN, and pre-trained Transformers
	A BERT model trained from scratch

	Discussion and Conclusions

	Linguistic evidence for the divergence
	Background
	A review of syntactic tests for language model evaluation
	Properties of the German G-Maze data

	Methods
	Results
	Discussion and Conclusion

	Conclusion and outlook for language modeling research
	Situating my contributions within CERBA
	On the future of language modeling

	Bibliography

