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Abstract

This study investigates the occurrence of sentence-initial filler
particles (e.g. euh, hum) in simultaneously interpreted and orig-
inal speeches using a bidirectional English-German corpus of
European Parliament debates. We assume that sentence-initial
filler particles indicate planning difficulties at the conceptual
level, whereas sentence-medial filler particles mark hesitations
over syntactic structure or lexical access. Since interpreters con-
vey the source speech and do not plan their own message, we
expect differences between interpreting and original speeches.
We operationalise conceptual complexity as average word sur-
prisal per sentence and local lexical or syntactic production
problems as surprisal of the word following the filler particle.
Our findings indicate that sentence-initial filler particles appear
in sentences with higher conceptual complexity but are not well
associated with local retrieval difficulty.

Index Terms: hesitation markers, filler particles, interpreting,
cognitive load, conceptual planning

1. Introduction

Filler particles (FPs, e.g. euh or hum, also called filled pauses or
hesitation markers) are a frequent phenomenon in spoken lan-
guage. These particles are syntactically non-essential, void of
propositional meaning and often reflect difficulties in linguistic
planning and production [1].

These properties render them particularly interesting in the
context of simultaneous interpreting, a complex task requiring
concurrent comprehension of source language input and pro-
duction of target language output. Previous research has shown
that FPs are generally more frequent in interpreting compared
to non-mediated (original) speech [2, 3]. Current research uses
the overall number of FPs as an empirical indicator of cogni-
tive load, linking it to various properties of the source and tar-
get texts that might contribute to the difficulty of the task (e.g.
numbers, high delivery rate, high lexical density [2, 4]).

The position of FPs in the sentence and their immediate
context were studied before in non-mediated (original) speech
production [5, 6, 7, 8, 9]. In simultaneous interpreting, Wang
and Li [10] is the only study to our knowledge that investigated
whether FPs appear in initial or medial position of phrases.
However, they did not explore underlying causes or predictors
of FP position.

Even though FPs can theoretically occur anywhere in a
sentence, previous research has identified some regularities.
FPs typically appear at phrase, clause and utterance bound-
aries [5, 11]. Furthermore, early work already highlighted the
probabilistic specificity of FPs’ immediate contexts [11, 12].
This was corroborated by more recent studies that found that
FPs are followed by words with high surprisal [7, 8].
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Surprisal, a measure rooted in information theory [13],
quantifies the (un)expectedness of a word based on its contex-
tual probability. It correlates with cognitive effort, as evidenced
by measures like reading times, eye fixations, and event-related
brain potentials [14, 15, 16, 17]: low-surprisal words require
less comprehension effort, while high-surprisal words are more
demanding. Moreover, some language production theories pro-
pose that surprisal influences lexical pre-activation, affecting
the ease of word retrieval [18, 19]. The measure of average sen-
tence surprisal (AvSrp) grounded in computational models (as
employed in the current study) has been used before as a mea-
sure of sentence information in translation studies [20] and in
clinical linguistics [21], where it was shown to reflect both lex-
ical and structural components of sentence information. AvSrp
(derived from cloze-test data) was reported to have a signifi-
cant positive relationship with Flesch-Kincaid-based text diffi-
culty [22]. This evidence motivates the use of AvSrp as a rea-
sonable measure of conceptual planning difficulties.

The influential speech production theory by Levelt [23] di-
vides the speech production process into three stages. The
first stage is conceptualisation, where a prelinguistic message
is formed as a semantic representation of an event. Message-
level encoding is followed by grammatical encoding, i.e. syn-
tactic planning and lexical access (formulation). The last stage
involves phonetic encoding and articulation.

Kosmala and Crible [9] found quantitative and qualitative
differences between FPs in sentence-initial and sentence-medial
positions in originally-authored speeches. They concluded that
FPs in initial position have a more fluent quality, signalling dis-
course boundaries, whereas in medial position they are more
disfluent, indicating retrieval difficulties. Swerts [5] established
that FPs marking major discourse boundaries were segmentally
and prosodically different compared to FPs in other positions.

These findings suggest a functional distinction between FPs
in initial position and those in medial position: the former re-
flect conceptual planning, the latter reflect problems at the lex-
ical or syntactic level. This study tests whether this holds in
interpreting.

Higher average surprisal values indicate a sentence’s over-
all unpredictability. This can be treated as an indicator of sen-
tences that are difficult to plan on the conceptual level. In con-
trast, high next-word surprisal signals local production diffi-
culty. Building on this distinction, the present study aims to ex-
plore the link between initial FPs and conceptual planning dif-
ficulties, using AvSrp as the main measure of conceptual com-
plexity and next-word surprisal as an indicator of local struc-
turing or retrieval difficulties. We also track differences be-
tween the two text types (simultaneous interpreting and origi-
nal speech) to test the hypothesis that conceptual planning in
interpreting is less of an issue compared to original speech.
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Table 1: Data parameters (de = German, en = English, org =
originals, si = simultaneous interpreting)

lang ttype docs sents tokens total FPs initial FPs
de org 165 3,217 64K 604 87
en si 165 3,673 63K 2,340 216
en org 137 3,692 71K 1,196 248
de si 137 3,293 64K 3,324 195
2. Methodology
2.1. Data

The data used in this study are drawn from the German and En-
glish subcorpora of EPIC-UdS [24]. They contain manual tran-
scriptions of speeches held at the European Parliament between
2008 and 2013 by English and German native-speaking Mem-
bers of Parliament, along with their respective simultaneous in-
terpretations into German and English. The transcribers were
instructed to include disfluencies such as filler particles, trunca-
tions and repetitions. The relevant metadata specifies speakers’
and interpreters’ identities.!

Table 1 summarises the quantitative parameters of the data,
including total counts of FPs and those occurring in sentence-
initial position, which are the focus of this study.

2.2. Surprisal values

Surprisal can be estimated either from non-contextualised prob-
abilities based on relative frequencies in a corpus or from con-
textualised probabilities produced by a computational language
model trained on large text data (e.g., n-gram models, LSTMs,
or Transformers such as LLaMA and GPT). It is calculated as
the negative base-2 logarithm of a token’s probability, given the
preceding context:

€))

and

S(w;) = —log2(P(w;|w1, wa, ..., wi—1))

where P is the probability of the word w;
w1, W2, ..., w;—1 18 its preceding context.

In our data, surprisal was estimated per word, using
language-specific pre-trained GPT-2 models with the vocabu-
lary size of 50 K tokens (English [25], German [26]). We used
GPT-2-small, as it fits reading times substantially better than
larger GPT-2 variants (e.g., GPT-2-XL) or newer models (e.g.,
GPT-3) [27]. Prior to surprisal indexing, the data was parsed
with Stanza [28]. The surprisal values were calculated for word-
tokens as defined by the parser by aggregating log probabilities
of the constituent subwords. Hyphenated words were treated as
one word-token.

FPs were removed before parsing and surprisal annotation,
and were reinserted into the corpus afterwards at their respec-
tive indices. Including them would have affected AvSrp and
surprisal of words following the FPs (i.e., next-token surprisal),
since they would have been treated as part of the preceding con-
text for those words. Extracting values for sentence-initial to-
kens is challenging because these tokens lack preceding con-
text for probability estimation. To address this, a beginning-of-
sentence token (<bos>) was added to the model’s vocabulary
and prepended to each sentence. This allows the model to esti-
mate the probability of a token to open a sentence.

I'A student assistant was asked to identify individual interpreters by
listening to interpreters’ voices.
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2.3. Modelling and Statistical Analysis

We used generalised linear mixed models (GLMMs) to anal-
yse the occurrence of initial FPs. A document-level analysis
of FP distribution between sentence-initial and sentence-medial
positions was conducted using Poisson regression. For binary
outcomes in sentence- and word-level experiments (presence or
absence of initial FPs and medial FP or medial regular word,
respectively), we applied logistic regression.

The regression models and statistical analyses were imple-
mented in the R environment [29] using car [30], ggplot2 [31],
emmeans [32] and Ime4 [33] packages.

We fitted separate regression models for the German and
the English data. The rationale was that while surprisal for
both languages was derived from comparable language models,
they were not identical. The probabilities from these models
come from two distinct distributions due to differences in train-
ing corpora and in morphological structures between the two
languages. A single regression model for both languages would
have treated these values as coming from a single source.

Speaker or interpreter identity (“speaker_-name’) and docu-
ment identity (“doc_id”’) were included as random intercepts in
all models. These random variables take into account the vari-
ation in the frequency of FPs across speakers and documents.
In this setup, the effect of the main predictors (e.g., AvSrp) is
assumed to be the same across speakers/documents.

The key predictors used in the sentence-level and/or word-
level experiments are outlined below:

ttypeC: text type (interpreting or original), sum-coded, i.e. the
reference level (0) is “centred” halfway between the two cat-
egories (interpreting coded as +1, originals coded as -1),

next_srp: the surprisal of the immediately following word; for
initial FPs, it is the first word in a sentence (recall that initial
FPs were not taken into account when estimating surprisal),

AvSrp average sentence surprisal, i.e. mean surprisal across
the sentence tokens, excluding punctuation,

AvDD average dependency distance, a well-established alter-
native measure of sentence comprehension complexity with
implications for cognitive costs of processing [34, 35, 36],

medialFP the count of the sentence-medial FPs,

sentence_length sentence length in Stanza tokens, excluding
FPs and punctuation.

The document-level experiment used two main categorical pre-
dictors, which are dummy-coded: text type (originals as refer-
ence category, coded as 0, interpreting coded as 1) and position
of FP (initial as reference category, coded as 0, medial coded
as 1) to predict the number of FP in each position per docu-
ment. Additionally, we coded interactions between text type
and key predictors: next_srp, AvSrp and AvDD. All continuous
variables were z-transformed to make them comparable to each
other, and to facilitate interpretability and convergence [37].

3. Results

3.1. Initial and medial FPs in originals vs. interpreting

In this document-level analysis, we examine the distribution of
initial and medial FPs in original and interpreted speeches, as-
suming that there are differences between the text types and po-
sitions. We fit two Poisson mixed-effects models with counts of
FPs per speech as the dependent variable. The models included
fixed effects for text type (original vs. interpreting), position
(initial vs. medial), and their interaction:
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Figure 1: Predicted FP counts per speech in the English (left)
and German (right), grouped by text type and position.

FP_count ~ ttype + position + ttype:position + off-
set(log(n_sentences)) + (1 | speaker_name) + (1 | doc_id).

We fit the number of sentences per speech as an expo-
sure variable, so that the model treats the number of sentences
per speech as fixed (24 sentences per English speech, 21 sen-
tences per German speech). We assessed overdispersion in
the model using the check_overdispersion() function from the
performance package [38]. Neither the English nor the Ger-
man model show evidence for overdispersion (dispersion ratio
=0.886, p > .979 and ratio = 0.640, p > 1, respectively).

The English model reveals a significant interaction between
position and text type (8 = 0.92, SE = 0.10, p < .001), indi-
cating that the difference between initial and medial FP counts
is larger for interpreting compared to originals, as seen in Fig-
ure 1. Pairwise comparison of estimated marginal means further
reveals that FP counts are significantly higher in medial com-
pared to initial positions for both text types (p < .001). Com-
paring across text types, we see that in initial positions, there is
no significant difference in predicted FP counts between origi-
nals and interpreting (p > .999), whereas in medial positions,
FP counts are significantly higher in interpreting compared to
originals (p < .001).

For the German data, we observe similar trends. The right-
hand side of Figure 1 shows that there is a significant inter-
action between position and text type (8 = 0.81, SE = 0.14,
p < .001), indicating that the difference between initial and
medial FP counts is more pronounced in interpreted compared
to original documents. When examining the effect of position
within each text type separately, the difference in counts be-
tween initial and medial positions is significant for both origi-
nal and interpreted texts (p < .001). Additionally, comparisons
across text types reveal significant differences between inter-
preting and originals for both FP counts in initial and medial
positions (p < .001). This is unlike the English data, where
initial position counts do not differ significantly between text

types.

3.2. Initial FPs: Conceptual vs. local difficulties

After examining the overall distribution of initial and medial
FPs in original and interpreted speeches, the analysis now turns
to potential explanatory variables for FPs in sentence-initial po-
sition.

In this experiment, the sentence-level binary response vari-
able of the logistic regression model indicates whether a sen-
tence opens with a FP (1) or not (0). The predictors and co-
efficients of the model are listed in Table 2. Note that here,
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Figure 2: Effect of sentence-average and next-word surprisal
on probability of an initial FP per sentence in the English and
German data.

Table 2: Estimates and significance levels for predictors in En-
glish and German sentence-level models. Significance codes:
% p < 0.001, #*p < 0.01, *p < 0.05

Predictor English ‘ German
(Intercept) -3.168 *** | 4,036 ***
AvDD_z -0.007 0.037
AvSrp._z 0.347 #*% | 0.415 ***
medialFP_z 0.109 * 0.089
next_srp_z 0.085 -0.300 ***
sentence_length.z  0.081 0.202 **
ttypeC -0.102 0.514 **
ttypeC:AvDD _z 0.013 0.060
ttypeC:AvSrp_z -0.033 0.062
ttypeCnext_srp.z  -0.096 0.001

next_srp_z means the surprisal of the word following the initial
FP or the surprisal of the initial word of the sentence without an
opening FP. To assess potential collinearity issues, we examine
the models’ variance inflation factors (VIFs). In both English
and German datasets, all VIF values are below 2, indicating that
collinearity is not a concern. We focus our discussion of results
on the main predictors.

As can be seen in Table 2, for the English model, AvSrp
emerges as the strongest significant predictor for FPs in
sentence-initial position. The higher AvSrp of a sentence, the
higher the probability of a FP at the sentence-initial position
(cf. left side Figure 2). In contrast, next-word surprisal has no
significant effect. Text type is not a significant predictor, con-
firming our observations in Section 3.1: there is no difference
between interpreting and originals for initial FPs. There are no
significant interactions, suggesting that AvSrp’s effect on initial
FP occurrence does not differ across text types.

The German model shows some differences compared to
the English model. As reflected in the results in Section 3.1, the
significant, positive estimate for text type indicates that there
are more initial FPs in interpreting than in originals. The signif-
icant effect of the next-word surprisal is depicted in Figure 2 (cf.
right side). The relation has an unexpected trend: the higher the
surprisal of the first word in the sentence, the lower the probabil-
ity of the sentence having an initial FP. AvSrp has the strongest
significant effect among the continuous predictors. Like in the
English data, the higher AvSrp, the more likely the sentence
begins with an initial FP.



Table 3: Estimates and significance levels for predictors in En-
glish and German word-level models. Significance codes: ***
p < 0.001, **p < 0.01, *p < 0.05

Predictor English ‘ German
(Intercept) -4.024 **¥* | 4,146 ***
AvSrp_z 0.104 #** | (.112 #%**
next_srp_z 0.383 *#%* 0.306 ***
ttypeC 0.567 *%*%* 1.073 #%**
ttypeC:AvSrp_z -0.047 * -0.021
ttypeC:next_srp_z  0.093 *** | -0.024

Similar to what we see in the English model, there are no
significant interactions in the German data, indicating that there
is no difference between originals and interpreting in the effects
of AvSrp and next-word surprisal on the occurrence of a FP at
the beginning of a sentence.

3.3. Medial FPs: Conceptual vs. local difficulties

This experiment aims to test whether sentence-medial FPs are
more associated with conceptual planning or with local struc-
turing problems. It partly reproduces our previous study [39],
using the predictors accessible in the scope of the current study.
Here, we fit a logistic regression model to a word-level binary
response variable distinguishing between sentence-medial FPs
and regular words in the corpus. Predictors and results of the
models appear in Table 3. In both the English and German
datasets, VIF values for AvSrp and next-word surprisal are be-
low 2, indicating that collinearity is not a concern.

The results for text type confirm the findings in Section
3.1, showing that medial FPs are more likely in interpreting in
both languages, independent of surprisal. Higher surprisal (both
next-word and sentence-average) is associated with a higher
likelihood of a word to be a sentence-medial FP. However, in
both languages, FPs inside the sentence are more associated
with next-word surprisal than with AvSrp. These surprisal ef-
fects seem to be the same in interpreting as in originals in Ger-
man (no significant interaction between either of the surprisal
measures and the text type). Importantly, in English, next-word
surprisal is higher in interpreting than in originals (as shown
by the interaction between text type and next-word surprisal).
This could indicate that interpreters face more local difficulties
and source language interference when rendering the German
source speech into English, compared to the local encoding dif-
ficulties that the original English speakers face. There is also an
interaction between AvSrp and text type in English: sentence-
average surprisal for medial FPs has a significantly lower effect
in interpreting than in original speeches. If AvSrp represents
conceptual difficulty, this result might mean that interpreters
into English struggle less with conceptual planning than orig-
inal speakers do.

The systemic analysis of the variability of the speakers
and documents as random intercepts indicates that the vari-
ance magnitudes are stable across the three experiments and
languages (not given here due to space constraints). Speakers
contribute more random variability than documents (i.e., con-
text). Speakers’ individual preferences had a considerable im-
pact on the predictions, with SD averaging at 0.91 for English
and 1.06 for German. German shows greater variability in both
grouping factors than English, pointing to less homogeneity in
how speakers and documents influence the occurrence of FPs.
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4. Discussion and conclusion

The present study highlights a functional distinction between
initial and medial FPs. In the sentence-level setup, AvSrp was
the only significant predictor of the presence of a FPs in the
beginning of the sentence in English. In German, the compet-
ing predictor, next-word surprisal, had a significant effect but
in the opposite direction, showing that initial FPs were less
likely if the first word in the sentence had higher surprisal. It
strongly supports the assumption that initial FP are not about
local difficulties. The word-level experiment tested the same
predictors on the occurrence of medial FPs. Here, although
both AvSrp and next-word surprisal significantly predicted the
outcome, the effect of next-word surprisal was approximately
three times stronger than that of AvSrp. Additionally, the to-
tal number of FPs in a sentence, another indicator of sentence
complexity, emerged as a relatively good predictor of the oc-
currence of an initial FP. These findings confirm that initial FPs
capture hesitations about conceptual planning to a greater ex-
tent than FPs in the sentence-medial positions, which are more
associated with local processing difficulties.

Our results also establish AvSrp as a possible measure of
conceptual planning difficulties. It proved to be a reasonably
strong predictor of initial FPs in comparison with AvDD as an
alternative measure of sentence complexity that did not return
significant results in any of our languages. Regarding overall
differences across text types, we found differences in the fre-
quency of FPs per position, but not in the tendencies for ex-
planatory predictors. As expected, interpreting had significantly
more FPs than original speech, including in initial position (for
German only). Contrary to our initial expectations, initial and
medial filler particles serve similar functions in both original
and interpreted speech. In interpreted English, medial filler par-
ticles appear to be even more strongly associated with local pro-
duction difficulties than with conceptual planning, as evidenced
by the interaction effects between text type and each surprisal
measure observed in Study 3.

There are several noteworthy limitations to this study. First,
while AvSrp shows promise as an indicator of conceptual com-
plexity, its validity should be tested in controlled experimental
settings. Second, our operationalisation of ‘sentence’ may not
align fully with definitions of ‘utterance’ or ‘inter-pausal units’
used in other studies, limiting comparability. On a more ab-
stract level, conventional sentence structures might not align
well with the actual scope of message planning. Finally, this
study did not explore other predictors additional and/or alterna-
tive to surprisal (except dependency distance). We cannot rule
out the possibility that those unknowns can also explain the role
of filler particles in various positions as signals of conceptual or
local planning difficulties.
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