Information Density and Quality Estimation Features as Translationese Indicators for Human Translation Classification Inproceedings
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics, pp. 960-970, San Diego, California, 2016.This paper introduces information density and machine translation quality estimation inspired features to automatically detect and classify human translated texts. We investigate two settings: discriminating between translations and comparable originally authored texts, and distinguishing two levels of translation professionalism. Our framework is based on delexicalised sentence-level dense feature vector representations combined with a supervised machine learning approach. The results show state-of-the-art performance for mixed-domain translationese detection with information density and quality estimation based features, while results on translation expertise classification are mixed.
@inproceedings{N16-1110,
title = {Information Density and Quality Estimation Features as Translationese Indicators for Human Translation Classification},
author = {Raphael Rubino and Ekaterina Lapshinova-Koltunski and Josef van Genabith},
url = {http://aclweb.org/anthology/N16-1110},
doi = {https://doi.org/10.18653/v1/N16-1110},
year = {2016},
date = {2016},
booktitle = {Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies},
pages = {960-970},
publisher = {Association for Computational Linguistics},
address = {San Diego, California},
abstract = {This paper introduces information density and machine translation quality estimation inspired features to automatically detect and classify human translated texts. We investigate two settings: discriminating between translations and comparable originally authored texts, and distinguishing two levels of translation professionalism. Our framework is based on delexicalised sentence-level dense feature vector representations combined with a supervised machine learning approach. The results show state-of-the-art performance for mixed-domain translationese detection with information density and quality estimation based features, while results on translation expertise classification are mixed.},
pubstate = {published},
type = {inproceedings}
}
Project: B6